[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 11, Issue 1 (2024) ::
pgr 2024, 11(1): 89-102 Back to browse issues page
Investigation of Genetic Diversity of Some Iranian Violet Species (Viola sp.) based on iPBS Molecular Marker
Faraneh Roshan , Mohammad Rabiei * , Behrouz Shiran
Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran , rabiei@sku.ac.ir
Abstract:   (612 Views)
Violet plants (Viola sp.) belonging to the Violaceae family are ornamental plants that could be used for drug design due to their cyclotidic compounds. In this study, 21 different ecotypes of violets were collected from the northern regions of Iran. After DNA extraction, the genetic diversity of ecotypes was investigated using the iPBS molecular marker. Twelve iPBS primers used during the present investigation resulted in 214 bands. The average percentage of observed polymorphism, polymorphic information content (PIC), and marker index (MI) were calculated to be 31.92%, 0.35%, and 5.64% respectively. The Nei genetic distance index ranged between 0 and 0.66. The results indicate a considerable genetic diversity among the violet ecotypes and the efficiency of the iPBS marker in detecting polymorphism. The population genetic analysis showed that 61% of the diversity is related to intra-species diversity. The species V. odorata and V. alba exhibited the greatest degrees of polymorphism, effective allele number, Shannon index value, and heterozygosity ratios. Also, the dendrogram depicted the close genetic relationship between these two species, as evidenced by Nei's genetic distance measurements. In general, considering the existing taxonomic information and the results obtained from this experiment, it can be concluded that the use of the iPBS marker is highly effective in systematic studies of the genus Viola. The results of this experiment led to the appropriate differentiation of ecotypes and species, which could be used in further breeding studies.
Keywords: Polymorphism, Genetic distance, Interspecies analysis
Full-Text [PDF 762 kb]   (182 Downloads)    
Type of Study: Research | Subject: Molecular genetics
References
1. Abolghasemi, S., Naderi, R. and Fattahi Moghadam, M. (2020). Evaluation of genetic diversity in Iranian Violet (Viola spp) populations using morphological and RAPD molecular markers. Journal of Genetic Resources, 6: 157-171.
2. Anca, T., Philippe, V., Ilioara, O. and Mircea, T. (2009). Composition of essential oils of Viola tricolor and V. arvensis from Romania. Chemistry of Natural Compounds, 45: 91-92. [DOI:10.1007/s10600-009-9244-y]
3. Babaei, S., Talebi, M., Bahar, M. and Zeinali, H. (2014). Analysis of genetic diversity among saffron (Crocus sativus) accessions from different regions of Iran as revealed by SRAP markers. Scientia Horticulturae, 171: 27-31. [DOI:10.1016/j.scienta.2014.03.033]
4. Bennouna, D., Avice, J.C., Rosique, C., Svilar, L., Pontet, C., Trouverie, J., Fine, F., Pinochet, X., Fraser, K. and Martin, J.C. (2019). The impact of genetics and environment on the polar fraction metabolome of commercial Brassica napus seeds: A multi-site study. Seed Science Research, 29: 167-178. [DOI:10.1017/S0960258519000138]
5. Cheon, K.S., Kim, K.A., Kwak, M., Lee, B. and Yoo, K.O. (2019). The complete chloroplast genome sequences of four Viola species (Violaceae) and comparative analyses with its congeneric species. PLoS One, 14: 0214162. [DOI:10.1371/journal.pone.0214162]
6. Dwiningsih, Y. and Alkahtani, J. (2022). Genetics, biochemistry and biophysical analysis of anthocyanin in rice (Oryza sativa L.). Advance Sustainable Science, Engineering and Technology, 4: 0220103. [DOI:10.26877/asset.v4i1.11659]
7. Eghlima, G., Kheiry, A., Sanikhani, M., Hadian, J. and Aelaie, M. (2021). Study of genetic diversity of Glycyrrizha glabra L. populations using ISSR molecular markers. Plant Genetic Researches, 8(1): 81-94 (In Persian). [DOI:10.52547/pgr.8.1.6]
8. Elisafenko, T. (2015). Features of seed germination in different ecological groups of the species of the section Violidum, subgenus Nomimium, genus Viola L. (Violaceae). Contemporary Problems of Ecology, 8: 523-533. [DOI:10.1134/S199542551504006X]
9. Gao, Y.H., Zhu, Y.Q., Tong, Z.K., Xu, Z.Y., Jiang, X.F. and Huang, C.H. (2014). Analysis of genetic diversity and relationships among genus Lycoris based on start codon targeted (SCoT) marker. Biochemical Systematics and Ecology, 57: 221-226. [DOI:10.1016/j.bse.2014.08.002]
10. Gharari, Z., Sharafi, A., Bagheri, K., Yazdinezhad, A. and Bijani, S. (2019). In vitro regeneration and secondary metabolites of Viola caspia subsp. sylvestrioides Marcussen. BioTechnologia Journal of Biotechnology Computational Biology and Bionanotechnology, 100: 789-782. [DOI:10.5114/bta.2019.90241]
11. Gogoi, L.R., Singh, S.K. and Sarma, R. (2018). Assessment of genetic diversity in indigenous sesame genotypes. International Journal of Current Microbiology and Applied Sciences, 7: 1509-1520. [DOI:10.20546/ijcmas.2018.706.179]
12. Golkar, P. and Nourbakhsh, V. (2019). Analysis of genetic diversity and population structure in Nigella sativa L. using agronomic traits and molecular markers (SRAP and SCoT). Industrial Crops and Products, 130: 170-178. [DOI:10.1016/j.indcrop.2018.12.074]
13. Gorji, A.M., Poczai, P., Polgar, Z. and Taller, J. (2011). Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. American Journal of Potato Research, 88: 226-237. [DOI:10.1007/s12230-011-9187-2]
14. Haliloğlu, K., Türkoğlu, A., Öztürk, A., Niedbała, G., Niazian, M., Wojciechowski, T. and Piekutowska, M. (2023). Genetic diversity and population structure in bread wheat germplasm from Türkiye using iPBS-retrotransposons-based markers. Agronomy, 13: 255-257. [DOI:10.3390/agronomy13010255]
15. Haliloğlu, K., Türkoğlu, A., Öztürk, H.I., Özkan, G., Elkoca, E. and Poczai, P. (2022). iPBS-retrotransposon markers in the analysis of genetic diversity among common Bean (Phaseolus vulgaris L.) germplasm from Türkiye. Genes, 13: 1147-1150. [DOI:10.3390/genes13071147]
16. Inceer, H., Hayirlioglu-Ayaz, S. and Ozcan, M. (2007). Chromosome numbers of the twenty-two Turkish plant species. Caryologia, 60: 349-357. [DOI:10.1080/00087114.2007.10797958]
17. Jamshidi-Kia, F., Lorigooini, Z. and Amini-Khoei, H. (2017). Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology, 7: 1-7. [DOI:10.15171/jhp.2018.01]
18. Kalendar, R. and Schulman, A.H. (2014). Transposon-based tagging: IRAP, REMAP, and iPBS. Molecular Plant Taxonomy: Methods and Protocols, 8: 233-255. [DOI:10.1007/978-1-62703-767-9_12]
19. Khajuria, A.K., Chandra, S., Manhas, R. and Bisht, N. (2019). Effect of different PGRs on in vitro organogenesis in Viola canescens Wall. ex. Roxb. from petiole callus culture. Vegetos, 32: 353-362. [DOI:10.1007/s42535-019-00044-1]
20. Kizilgeci, F., Bayhan, B., Türkoğlu, A., Haliloglu, K. and Yildirim, M. (2022). Exploring genetic diversity and Population structure of five Aegilops species with inter-primer binding site (iPBS) markers. Molecular Biology Reports, 49: 8567-8574. [DOI:10.1007/s11033-022-07689-3]
21. Kwiatkowska, M., Żabicka, J., Migdałek, G., Żabicki, P., Cubała, M., Bohdanowicz, J., Słomka, A., Jędrzejczyk-Korycińska, M., Sliwinska, E. and Sychta, K. (2019). Comprehensive characteristics and genetic diversity of the endemic Australian Viola banksii (section Erpetion, Violaceae). Australian Journal of Botany, 67: 81-98. [DOI:10.1071/BT18233]
22. Marcussen, T. (2003). Evolution, phylogeography, and taxonomy within the Viola alba complex (Violaceae). Plant Systematics and Evolution, 237: 51-74. [DOI:10.1007/s00606-002-0254-5]
23. Marcussen, T. (2006). Allozymic variation in the widespread and cultivated Viola odorata (Violaceae) in western Eurasia. Botanical Journal of the Linnean Society, 151: 563-571. [DOI:10.1111/j.1095-8339.2006.00543.x]
24. Marcussen, T., Ballard, H.E., Danihelka, J., Flores, A.R., Nicola, M.V. and Watson, J.M. (2022). A revised phylogenetic classification for Viola (Violaceae). Plants, 11: 22-24. [DOI:10.3390/plants11172224]
25. MirMohammadi Maibody, S.A.M. and Golkar, P. (2019). Application of DNA molecular markers in plant breeding. Plant Genetic Researches, 6(1): 1-30 (In Persian). [DOI:10.29252/pgr.6.1.1]
26. Mohammadi, S.A. and Prasanna, B. (2003). Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Science, 43: 1235-1248. [DOI:10.2135/cropsci2003.1235]
27. Nadeem, M.A., Nawaz, M.A., Shahid, M.Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A. and Labhane, N. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32: 261-285. [DOI:10.1080/13102818.2017.1400401]
28. Nei, M. and Li, W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76: 5269-5273. [DOI:10.1073/pnas.76.10.5269]
29. Peakall, R. and Smouse, P.E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288-295. [DOI:10.1111/j.1471-8286.2005.01155.x]
30. Rad, J.E. and Shafiei, A.B. (2010). The distribution of ecological species groups in Fagetum communities of Caspian forests: determination of effective environmental factors. Flora-Morphology, Distribution, Functional Ecology of Plants, 205: 721-727. [DOI:10.1016/j.flora.2010.04.015]
31. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. and Allard, R.W. (1984). Ribosomal DNAsepacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. proceedings of the National Academy of Sciences of the United States of America. 81: 8014-8019. [DOI:10.1073/pnas.81.24.8014]
32. Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18: 6531-6535. [DOI:10.1093/nar/18.22.6531]
33. Yang, R.C. and Yeh, F.C. (1992). Genetic consequences of in situ and ex situ conservation of forest trees. The Forestry Chronicle, 68: 720-729. [DOI:10.5558/tfc68720-6]
34. Yockteng, R., Jr Ballard, H., Mansion, G., Dajoz, I. and Nadot, S. (2003). Relationships among pansies (Viola section Melanium) investigated using ITS and ISSR markers. Plant Systematics and Evolution, 241: 153-170. [DOI:10.1007/s00606-003-0045-7]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roshan F, Rabiei M, Shiran B. Investigation of Genetic Diversity of Some Iranian Violet Species (Viola sp.) based on iPBS Molecular Marker. pgr 2024; 11 (1) :89-102
URL: http://pgr.lu.ac.ir/article-1-311-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 1 (2024) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 38 queries by YEKTAWEB 4657