1. Abdi, H., Alipour, H., Bernousi, I. and Jafarzadeh, J. (2023). Evaluation of population structure in some bread and durum wheat genotypes using SNP markers and PCA and DAPC methods. Plant Genetic Researches, 10(1): 95-110 (In Persian). 2. Afridi, K., Khan, N.U., Bibi, Z., Gul, S., Gul, R., Ali, S., Ali, N., Khalil, I.A., Uddin, F. and Ahmad, G. (2018). Assessment of genetic effects for earliness and yield traits in F1 and F2 half diallel populations of wheat. International Journal of Agriculture and Biology, 20: 2785-2796. 3. Ahmad, M. (2000) Molecular marker assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theoretical and Applied Genetics, 101: 892-896.
Aktas, H. and Sener, O. (2020). Effect of HMW and LMW glutenin alleles on quality traits of bread wheat. Journal Genetika, 5: 257-271.
https://doi.org/10.2298/GENSR2001257A [ DOI:10.1007/s001220051558] 4. Al-Tamimi, O.A., Al-Jbori J.M.A. and El-Hosary, A.A.A. (2020). Genetic analysis of F1 cross in wheat (Triticum asetivum L.). Plant Archives, 20: 413-4137. 5. Bilgin, O., Yazici, E., Balkan, A. and Baser, I. (2022). Selection for high yield and quality in half-diallel bread wheat F2 populations (Triticum aestivum L.) through heterosis and combining ability analysis. International Journal of Agriculture Environment and Food Sciences, 6: 285-293. [ DOI:10.31015/jaefs.2022.2.12] 6. Branlard, G. and Dardevet, M. (1985). Diversity of grain protein and bread wheat quality: II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. Journal of Cereal Science, 3: 345-354. [ DOI:10.1016/S0733-5210(85)80007-2] 7. Brar, G.S., Pozniak, C.J., Briggs, C. and Hucl, P.J. (2021). Combined selection of Gpc-B1 and Glu-B1 locus encoding the Bx7OE subunit for improving end-use quality of hard white wheat. Journal of Cereal Science, 100: 103260.
Chaudhari, G.R., Patel, D.A., Kalola, A.D. and Kumar, S. (2023). Use of graphical and numerical approaches for diallel analysis of grain yield and its attributes in bread wheat (Triticum aestivum L.) under varying environmental conditions. Agriculture, 13: 171.
https://doi.org/10.3390/agriculture13010171
Curtis, B.C., Sanjaya, R. and Macpherson, H.G. (2002). Bread Wheat: Improvement and Production. Food and Agriculture Organization of the United Nations (FAO), Rome, IT. [ DOI:10.1016/j.jcs.2021.103260] 8. Doyle, J.J. and Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytocemical Bulletin. 19: 11-15.
Falconer, D.S. and Mackay, T.F.C. (1996). Introduction to quantitative genetics. 4th. Addison Wesley Longman, Harlow, UK. 9. Famina, A.A., Malyshev, S.V., Shylava, A.A., Liaudanski, A.D. and Urbanovich, O.Y. (2019). Study of allelic diversity of the gene encoding high molecular weight glutenins in wheat varieties and lines utilizes in the breeding process in the republic of Belarus using PCR markers. Journal Cytology and Genetics, 53: 282-293.
FAO, (2023). Food and Agriculture Organization of the United Nations (FAO). Available online at: https://www.fao.org/faostat/en/#data/QCL. [ DOI:10.3103/S0095452719040054] 10. Gao, S., Sun, G., Liu, W., Sun, D., Peng, Y. and Ren, X. (2020). High-molecular-weight glutenin subunit compositions in current Chinese commercial wheat cultivars and the implication on Chinese wheat breeding for quality. Journal Cereals and Grains Association, 771: 762. [ DOI:10.1002/cche.10290] 11. Izadi-Darbandi, A. and Yazdi-Samadi, B. (2012) Marker-assisted selection of high molecular weight glutenin alleles related to bread-making quality in Iranian common wheat (Triticum aestivum L.). Journal of Genetics, 91: 193-198. [ DOI:10.1007/s12041-012-0169-z] 12. Kearsey, M.J. and Pooni, H.S. (1996). The Genetical Analysis of Quantitative Traits. Chapman and Hall, London, UK. [ DOI:10.1007/978-1-4899-4441-2] 13. Kocourkova, Z., Bradova, J., Kohutova, Z., SLamova, L., Vejl, P. and Horcicka, P. (2008). Wheat breeding for the improved bread-making quality using PCR based markers of glutenins. Czech Journal of Genetics and Plant Breeding, 44: 105-113. [ DOI:10.17221/20/2008-CJGPB] 14. Kuchel, H., Fox, R., Reinheimer, J., Mosionek, L., Willeym, N., Bariana, H. and Jefferies, S. (2007). The successful application of a marker-assisted wheat breeding strategy. Molecular Breeding, 20: 295-308. [ DOI:10.1007/s11032-007-9092-z] 15. Lie, Z.S., Gale, K.R., He, Z.H., Gianibelli, C., Larroque, O., Xia, X.C. and Ma, W. (2006). Y type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. Journal of Cereal Science, 43: 94-101. [ DOI:10.1016/j.jcs.2005.08.003] 16. Liu, S., Chao, S. and Anderson, J.A. (2008). New DNA markers for high molecular weight glutenin subunits in wheat. Theoretical and Applied Genetics, 118: 177-183. [ DOI:10.1007/s00122-008-0886-0] 17. Ma, W., Zhang, W. and Gale, K.R. (2003) Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica. 134: 51-60. [ DOI:10.1023/A:1026191918704] 18. Payne, P.I., Nightingale, M.A., Krattiger, A.F. and Holt, L.M. (1987). The relationship between HMW glutenin subunit composition and the bread making quality of British grown wheat varieties. Journal of the Sciences of Food and Agriculture, 40: 51-65. [ DOI:10.1002/jsfa.2740400108] 19. Poudine, M., Pahlevani, M., Zeinalinejad, K. and Soghi, H.U. (2015). Determining quality of bread wheat cultivars using protein electrophoresis and STS markers associated with high molecular weight glutenin subunits, Biological Forum, 7: 1131-1138.
Rahimi Darabad, J., Rashidi, V., Shahbazi, H., Moghaddam Vahed, M. and Khalilvand, E. (2021). genetic analysis of agronomic traits of barley (Hordeum vulgare L.) cultivars under salinity stress using diallel cross. Plant Genetic Researches, 7(2): 83-96 (In Persian). [ DOI:10.52547/pgr.7.2.7] 20. Ram, S., Devi, R., Singh, R.B., Narwal, S., Singh, B. and Singh, G.P. (2019). Identification of codominant marker linked with Glu-D1 double null and its utilization in improving wheat for biscuit making quality. Journal of Cereal Science, 90: 102853. [ DOI:10.1016/j.jcs.2019.102853] 21. Sadeghi, K., Pahlevani, M., Esmeilzadeh Moghaddam, M. and Zaynali Nezhad, K. (2022). Genetic analysis and graphic analysis of wheat dialell crosses using biplot, Journal of Crop Production, 15: 163-186 (In Persian). 22. Shadadeh, M., Pahlevani, M., Zenalinezhad, K., Esmaeilzadeh Moghaddam, M. and Bagherikia, S. (2020). Evaluation of baking quality in Iranian bread wheat cultivars using high molecular weight glutenin subunits. Journal of Crop Production, 12:151-160 (In Persian). [ DOI:10.52547/jcb.12.35.151] 23. Shewry, P., Gilbert, S., Savage, A., Tatham, A., Wan, Y. F., Belton, P. and Halford, N. (2003). Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties. Theoretical and Applied Genetics, 106: 744-750. [ DOI:10.1007/s00122-002-1135-6] 24. Schwarz, G., Felsenstein, F.G. and Wenzel, G. (2004): Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1-1d (Bx6) in wheat. Theoretical and Applied Genetics, 109: 1064-1069. [ DOI:10.1007/s00122-004-1718-5] 25. Song, L., Wang, R., Yang, X., Zhang, A. and Liu, D. (2023). Molecular markers and their applications in marker assisted selection (MAS) in bread wheat (Triticum aestivum L.). Agriculture, 13: 642. [ DOI:10.3390/agriculture13030642] 26. Soughi, H., Bagherikia, S. and Khodarahmi, M. (2022). Diallel analysis of grain yield and some important agronomic traits in bread wheat. Journal of Crop Production, 14: 21-28 (In Persian). [ DOI:10.52547/jcb.14.43.21]
|