Diallel Analysis of Wheat Cultivars for Grain Yield and Estimation of Their Baking Quality Using STS Markers
|
Ramezanali Pourali , Mohammadhadi Pahlevani * , Khalil Zeinalnejad |
Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran , hpahlevani@gau.ac.ir |
|
Abstract: (2286 Views) |
Increasing grain yield and improving the quality of bread are among the most important goals of wheat breeding programs in Iran. Understanding the genetic control of traits and finding molecular or morphological markers associated with them are also prerequisites for any genetic engineering program. In this study, 100 progenies of a 10 × 10 diallel cross were used to analyse the genetics of grain yield and bakery values using STS markers associated with HMWG subunits. This research was carried out during 2018 and 2019 cropping season at Gorgan University of Agricultural Sciences and Natural Resources experimental fields. In the first year, 10 wheat cultivars, including Gonbad, Morvarid, Kalate, Ehsan, Sirvan, Baharan, Chamran2, Shush, Mehrgan and Brat collected from different geographical regions of Iran were planted and crossed in the field. In the second year, the parents and crosses were planted in the form of a randomized complete block design with three replications. The grain yield, number of spikes per plant, number of seeds per spike, seed weight, days to emergence and plant height were recorded. The results of this study indicated significant genetic differences between the parents. Narrow-sense heritability analysis revealed that the crossing of cultivars is the best breeding method to enhance seed yield, number of spikes per plant and days to emergence. Also, to improve the number of seeds per spike, seed weight and plant height, classical breeding methods may offer higher efficiency. Marvarid and Gonbad were ranked 1st and 2nd, respectively with respect to general combining abilities for grain yield, attributed to their positive and significant general combining ability effects. The highest specific combining ability was observed for Ehsan×Gonbad, Marvarid×Chamran 2 and Shush×Sirvan crosses. The results of molecular markers analysis showed that the STS markers were able to identify the difference in the baking value of cultivars. The quality score of the cultivars ranged 6 and 10 and to this end, Kalate and Brat were the top cultivars. Therefore, due to superiority in terms of both quantity and quality for yield, these cultivars can be used as parents with desirable genes for future breeding programs. Overall, the STS markers employed in this study proved to be valuable markers for enhancing the genetic background of bread wheat, particularly when employing marker-assisted selection for bakery value. |
|
Keywords: Combining ability, Dominance, Quality, Glutenin, Marker |
|
Full-Text [PDF 1524 kb]
(706 Downloads)
|
Type of Study: Research |
Subject:
Molecular genetics
|
|
|
|
|
References |
1. Abdi, H., Alipour, H., Bernousi, I. and Jafarzadeh, J. (2023). Evaluation of population structure in some bread and durum wheat genotypes using SNP markers and PCA and DAPC methods. Plant Genetic Researches, 10(1): 95-110 (In Persian). 2. Afridi, K., Khan, N.U., Bibi, Z., Gul, S., Gul, R., Ali, S., Ali, N., Khalil, I.A., Uddin, F. and Ahmad, G. (2018). Assessment of genetic effects for earliness and yield traits in F1 and F2 half diallel populations of wheat. International Journal of Agriculture and Biology, 20: 2785-2796. 3. Ahmad, M. (2000) Molecular marker assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theoretical and Applied Genetics, 101: 892-896.
Aktas, H. and Sener, O. (2020). Effect of HMW and LMW glutenin alleles on quality traits of bread wheat. Journal Genetika, 5: 257-271.
https://doi.org/10.2298/GENSR2001257A [ DOI:10.1007/s001220051558] 4. Al-Tamimi, O.A., Al-Jbori J.M.A. and El-Hosary, A.A.A. (2020). Genetic analysis of F1 cross in wheat (Triticum asetivum L.). Plant Archives, 20: 413-4137. 5. Bilgin, O., Yazici, E., Balkan, A. and Baser, I. (2022). Selection for high yield and quality in half-diallel bread wheat F2 populations (Triticum aestivum L.) through heterosis and combining ability analysis. International Journal of Agriculture Environment and Food Sciences, 6: 285-293. [ DOI:10.31015/jaefs.2022.2.12] 6. Branlard, G. and Dardevet, M. (1985). Diversity of grain protein and bread wheat quality: II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. Journal of Cereal Science, 3: 345-354. [ DOI:10.1016/S0733-5210(85)80007-2] 7. Brar, G.S., Pozniak, C.J., Briggs, C. and Hucl, P.J. (2021). Combined selection of Gpc-B1 and Glu-B1 locus encoding the Bx7OE subunit for improving end-use quality of hard white wheat. Journal of Cereal Science, 100: 103260.
Chaudhari, G.R., Patel, D.A., Kalola, A.D. and Kumar, S. (2023). Use of graphical and numerical approaches for diallel analysis of grain yield and its attributes in bread wheat (Triticum aestivum L.) under varying environmental conditions. Agriculture, 13: 171.
https://doi.org/10.3390/agriculture13010171
Curtis, B.C., Sanjaya, R. and Macpherson, H.G. (2002). Bread Wheat: Improvement and Production. Food and Agriculture Organization of the United Nations (FAO), Rome, IT. [ DOI:10.1016/j.jcs.2021.103260] 8. Doyle, J.J. and Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytocemical Bulletin. 19: 11-15.
Falconer, D.S. and Mackay, T.F.C. (1996). Introduction to quantitative genetics. 4th. Addison Wesley Longman, Harlow, UK. 9. Famina, A.A., Malyshev, S.V., Shylava, A.A., Liaudanski, A.D. and Urbanovich, O.Y. (2019). Study of allelic diversity of the gene encoding high molecular weight glutenins in wheat varieties and lines utilizes in the breeding process in the republic of Belarus using PCR markers. Journal Cytology and Genetics, 53: 282-293.
FAO, (2023). Food and Agriculture Organization of the United Nations (FAO). Available online at: https://www.fao.org/faostat/en/#data/QCL. [ DOI:10.3103/S0095452719040054] 10. Gao, S., Sun, G., Liu, W., Sun, D., Peng, Y. and Ren, X. (2020). High-molecular-weight glutenin subunit compositions in current Chinese commercial wheat cultivars and the implication on Chinese wheat breeding for quality. Journal Cereals and Grains Association, 771: 762. [ DOI:10.1002/cche.10290] 11. Izadi-Darbandi, A. and Yazdi-Samadi, B. (2012) Marker-assisted selection of high molecular weight glutenin alleles related to bread-making quality in Iranian common wheat (Triticum aestivum L.). Journal of Genetics, 91: 193-198. [ DOI:10.1007/s12041-012-0169-z] 12. Kearsey, M.J. and Pooni, H.S. (1996). The Genetical Analysis of Quantitative Traits. Chapman and Hall, London, UK. [ DOI:10.1007/978-1-4899-4441-2] 13. Kocourkova, Z., Bradova, J., Kohutova, Z., SLamova, L., Vejl, P. and Horcicka, P. (2008). Wheat breeding for the improved bread-making quality using PCR based markers of glutenins. Czech Journal of Genetics and Plant Breeding, 44: 105-113. [ DOI:10.17221/20/2008-CJGPB] 14. Kuchel, H., Fox, R., Reinheimer, J., Mosionek, L., Willeym, N., Bariana, H. and Jefferies, S. (2007). The successful application of a marker-assisted wheat breeding strategy. Molecular Breeding, 20: 295-308. [ DOI:10.1007/s11032-007-9092-z] 15. Lie, Z.S., Gale, K.R., He, Z.H., Gianibelli, C., Larroque, O., Xia, X.C. and Ma, W. (2006). Y type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. Journal of Cereal Science, 43: 94-101. [ DOI:10.1016/j.jcs.2005.08.003] 16. Liu, S., Chao, S. and Anderson, J.A. (2008). New DNA markers for high molecular weight glutenin subunits in wheat. Theoretical and Applied Genetics, 118: 177-183. [ DOI:10.1007/s00122-008-0886-0] 17. Ma, W., Zhang, W. and Gale, K.R. (2003) Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica. 134: 51-60. [ DOI:10.1023/A:1026191918704] 18. Payne, P.I., Nightingale, M.A., Krattiger, A.F. and Holt, L.M. (1987). The relationship between HMW glutenin subunit composition and the bread making quality of British grown wheat varieties. Journal of the Sciences of Food and Agriculture, 40: 51-65. [ DOI:10.1002/jsfa.2740400108] 19. Poudine, M., Pahlevani, M., Zeinalinejad, K. and Soghi, H.U. (2015). Determining quality of bread wheat cultivars using protein electrophoresis and STS markers associated with high molecular weight glutenin subunits, Biological Forum, 7: 1131-1138.
Rahimi Darabad, J., Rashidi, V., Shahbazi, H., Moghaddam Vahed, M. and Khalilvand, E. (2021). genetic analysis of agronomic traits of barley (Hordeum vulgare L.) cultivars under salinity stress using diallel cross. Plant Genetic Researches, 7(2): 83-96 (In Persian). [ DOI:10.52547/pgr.7.2.7] 20. Ram, S., Devi, R., Singh, R.B., Narwal, S., Singh, B. and Singh, G.P. (2019). Identification of codominant marker linked with Glu-D1 double null and its utilization in improving wheat for biscuit making quality. Journal of Cereal Science, 90: 102853. [ DOI:10.1016/j.jcs.2019.102853] 21. Sadeghi, K., Pahlevani, M., Esmeilzadeh Moghaddam, M. and Zaynali Nezhad, K. (2022). Genetic analysis and graphic analysis of wheat dialell crosses using biplot, Journal of Crop Production, 15: 163-186 (In Persian). 22. Shadadeh, M., Pahlevani, M., Zenalinezhad, K., Esmaeilzadeh Moghaddam, M. and Bagherikia, S. (2020). Evaluation of baking quality in Iranian bread wheat cultivars using high molecular weight glutenin subunits. Journal of Crop Production, 12:151-160 (In Persian). [ DOI:10.52547/jcb.12.35.151] 23. Shewry, P., Gilbert, S., Savage, A., Tatham, A., Wan, Y. F., Belton, P. and Halford, N. (2003). Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties. Theoretical and Applied Genetics, 106: 744-750. [ DOI:10.1007/s00122-002-1135-6] 24. Schwarz, G., Felsenstein, F.G. and Wenzel, G. (2004): Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1-1d (Bx6) in wheat. Theoretical and Applied Genetics, 109: 1064-1069. [ DOI:10.1007/s00122-004-1718-5] 25. Song, L., Wang, R., Yang, X., Zhang, A. and Liu, D. (2023). Molecular markers and their applications in marker assisted selection (MAS) in bread wheat (Triticum aestivum L.). Agriculture, 13: 642. [ DOI:10.3390/agriculture13030642] 26. Soughi, H., Bagherikia, S. and Khodarahmi, M. (2022). Diallel analysis of grain yield and some important agronomic traits in bread wheat. Journal of Crop Production, 14: 21-28 (In Persian). [ DOI:10.52547/jcb.14.43.21]
|
|
Send email to the article author |
|
|
Pourali R, Pahlevani M, Zeinalnejad K. Diallel Analysis of Wheat Cultivars for Grain Yield and Estimation of Their Baking Quality Using STS Markers. pgr 2024; 10 (2) :19-34 URL: http://pgr.lu.ac.ir/article-1-285-en.html
|