[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 4، شماره 1 - ( 6-1396 ) ::
جلد 4 شماره 1 صفحات 1-24 برگشت به فهرست نسخه ها
کاربرد برآوردگر‌های مؤلفه‌های واریانس در به‌نژادی گیاهان
امیدعلی اکبرپور
استادیار دانشگاه لرستان
چکیده:   (1396 مشاهده)
برای اجرای هر برنامه  به‌نژادی آگاهی از ساختار ژنتیکی صفت مورد بررسی، میزان تأثیر عوامل محیطی و اثر متقابل عوامل ژنتیکی و محیطی و همچنین اطلاع از تأثیر ثابت و تصادفی بودن فاکتورها بر تحلیل نتایج یک امر ضروری است. به طبع آن تجزیه و تحلیل مولفه‌های واریانس از اهمیت زیادی در به‌نژادی گیاه و دام برخوردار است. برای برآورد مولفه‌های واریانس از برآوردگرهای زیادی استفاده می‌شود که ANOVA یکی از مهمترین آنها است. این برآوردگر در برخی موقعیت ها که داده‌ها نامتعادل هستند و مولفه‌های واریانس منفی برآورد می‌شوند، ناکارآمدتر از برآوردگرهای حداکثر درستنمایی (Maximum Likelihood; ML) و حداکثر درستنمای محدود شده (Restricted Maximum Likelihood; REML) هستند. لذا هدف از این تحقیق بررسی مروری مدل‌های خطی مختلط و مقایسه برآورد مولفه‌های واریانس به روش‌های ANOVA، ML وREML با استفاده از داده‌های آزمایشی است.
 
واژه‌های کلیدی: برآورد، تجزیه واریانس، حداکثر درستنمایی، حداکثر درستنمایی محدود شده، مؤلفه‌های واریانس، رگرسیون
متن کامل [PDF 1223 kb]   (207 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: تخصصي
دریافت: ۱۳۹۶/۱/۳ | پذیرش: ۱۳۹۶/۱۰/۱۳ | انتشار: ۱۳۹۶/۱۰/۱۸
فهرست منابع
1. Acquaah, G. (2009). Principles of Plant Genetics and Breeding. John Wiley & Sons, New Jersey, USA.
2. Aitkin, M. (1978). The analysis of unbalanced cross-classifications. Journal of the Royal Statistical Society Series A (General), 141: 195-223. [DOI:10.2307/2344453]
3. Akbarpour, O., Dehghani, H., Rousta, M., J, and Amini, A. (2015a). Evaluation of some properties of Iranian wheat genotypes in normal and salt-stressed conditions using Restricted Maximum Likelihood (REML). Iranian Journal of Field Crop Science, 46: 57-69 (In Persian).
4. Akbarpour, O., Dehghani, H. and Rousta, M.J. (2015b). Evaluation of salt stress of Iranian wheat germplasm under field conditions. Crop and Pasture Science, 66: 770-781. [DOI:10.1071/CP14286]
5. Anderson, R.L. and Bancroft, T.A. (1952). Statistical Theory in Research. McGraw-Hill Book Company, Inc, New York, USA.
6. Barnett, V. (1966). Evaluation of the maximum-likelihood estimator where the likelihood equation has multiple roots. Biometrika, 53: 151-165. [DOI:10.1093/biomet/53.1-2.151]
7. Bertsekas, D.P. and Tsitsiklis, J.N. (2008). Introduction to Probability. American Mathematical Society Press, Providence, USA.
8. Bishop, C. (1992). Exact Ccalculation of the Hessian matrix for the Multilayer Perceptron. MIT Press, Massachusetts, USA.
9. Casella, G. and Berger, R.L. (1990). Statistical Inference. Cole Advanced Books & Software, Pacific Grove, California, USA.
10. Der, G. and Everitt, B. (2002). A handbook of statistical analyses using SAS, Chapman and Hall, London, UK.
11. Falconer, D. and Mackay, T. (1996). Introduction to Quantitative Genetics. Longman, London, UK.
12. Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh, London, UK.
13. Graybill, F.A. and Iyer, H.K. (1994). Regression analysis: Concepts and Applications, Belmont, California, USA.
14. Graybill, F.A. and Wortham, A. (1956). A note on uniformly best unbiased estimators for variance components. Journal of the American Statistical Association, 51: 266-268. [DOI:10.1080/01621459.1956.10501325]
15. Hallauer, A.R., Carena, M.J. and Miranda Filho, J.d. (2010). Quantitative Genetics in Maize Breeding, Springer Science & Business Media, Berlin, DE.
16. Hartley, H.O. and Rao, J.N. (1967). Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika, 54: 93-108. [DOI:10.1093/biomet/54.1-2.93]
17. Harville, D.A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72: 320-338. [DOI:10.1080/01621459.1977.10480998]
18. Henderson, C.R. (1984). Application of Linear Models in Animal Breeding. University of Guelph, Ontario, California, USA.
19. Henderson, C., Searle, S. and Schaeffer, L. (1974). The invariance and calculation of method 2 for estimating variance components. Biometrics, 30: 583-588. [DOI:10.2307/2529223]
20. Holland, J.B., Nyquist, W.E. and Cervantes-Martínez, C.T. (2003). Estimating and interpreting heritability for plant breeding: an update. Plant Breeding Reviews, 22: 9-112.
21. Ismaili, A., Karami, F., Akbarpour, O. and Rezaei Nejad, A. (2016). Estimation of Genotypic Correlation and Heritability of Apricot Traits, Using Restricted Maximum Likelihood in Repeated Measures Data. Canadian Journal of Plant Science, 96: 439-447. [DOI:10.1139/cjps-2015-0253]
22. Kempthorne, O. (1968). Discussion of Searle. Biometrics, 24: 782-784.
23. King, G. (1998). Unifying Political Methodology: The Likelihood Theory of Statistical Inference. Cam- bridge University Press, Londan, UK. [DOI:10.3998/mpub.23784]
24. Lehmann, E.L. and Casella, G. (2006). Theory of Point Estimation. Springer Science & Business Media, Berlin, DE.
25. Littell, R., Milliken, G., Stroup, W. and Wolfinger, R. (2006). SAS system for Mixed Models. SAS Institute Inc, Cary, North Carolina, USA.
26. Lynch, M. and Walsh, B. (1998). Genetics and analysis of Quantitative Traits. Sinauer Associates, Massachusetts, USA.
27. Milliken, G.A. and Johnson, D.E. (1992). Analysis of Messy Data. Volume I: Designed experiments., Chapman & Hall, New York, USA.
28. Mood, A.M., Graybill, F.A. and Boes, D.C. (1974). Introduction to the Theory of Statistics. 3rd ed, USA.
29. Nelder, J. (1977). A reformulation of linear models. Journal of the Royal Statistical Society Series A (General), 140: 48-77. [DOI:10.2307/2344517]
30. Neter, J., Kutner, M.H., Nachtsheim, C.J. and Wasserman, W. (2004). Applied Linear Statistical Models, Irwin Chicago, USA.
31. Nyquist, W.E. and Baker, R. (1991). Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Sciences, 10: 235-322. [DOI:10.1080/07352689109382313]
32. Patterson, H.D. and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3): 545-554. [DOI:10.1093/biomet/58.3.545]
33. Rawlings, J.O., Pantula, S.G. and Dickey, D.A. (2001). Applied Regression Analysis: A Research Tool. Springer Science & Business Media, Berlin, DE.
34. Sahai, H. and Miguel, M.O. (2004). Analysis of Variance for Random Models Volume I: Balanced Data Theory, Methods, Applications and Data Analysis. Business Media New York, USA. [DOI:10.1007/978-0-8176-8168-5]
35. Sahai, H. and Ojeda, M.M. (2004). Analysis of Variance for Random Models, Volume 2: Unbalanced Data: Theory, Methods, Applications, and Data Analysis, Springer Science & Business Media, Berlin, DE.
36. Sahai, H. and Thompson, W.O. (1973). The Teacher's Corner: Non-Negative Maximum Likelihood Estimators of Variance Components in a Simple Linear Model. The American Statistician, 27: 112-113. [DOI:10.1080/00031305.1973.10479006]
37. Schaeffer, L. (1998). Variance Component Estimation Course Notes. University of New England, Armidale, NSW.
38. Searle, S., Casella, G. and McCulloch, C. (2006). Variance Components. John Wiley and Sons, New York, USA.
39. Searle, S.R. (1971). Linear Models, John Wiley & Sons, New Jersey, USA.
40. Small, C.G., Wang, J. and Yang, Z. (2000). Eliminating multiple root problems in estimation Statistical Science, 15: 313-341. [DOI:10.1214/ss/1009213000]
41. Sorensen, D. and Gianola, D. (2007). Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics, Springer Science & Business Media, Berlin, DE.
42. Steel, R. and Torrie, J. (1997). Principles and Procedures of Statistics. A Biometrical Approach, McGraw-Hill Book Company In Company, New York, USA.
43. Thompson, W. and Moore, J.R. (1963). Non-negative estimates of variance components. Technometrics, 5: 441-449. [DOI:10.1080/00401706.1963.10490122]
44. Valizadeh, S. (2014). Evaluation of genotypic variation of wheat genotypes under low water stress in Khorramabad climate conditions. Lorestan Univarsity, Lorestan, IR.
45. Yang, R.C. (2010). Towards understanding and use of mixed-model analysis of agricultural experiments. Canadian Journal of Plant Science, 90: 605-627. [DOI:10.4141/CJPS10049]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

کد امنیتی را در کادر بنویسید >



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbarpour O. Application of Variance Components Estimators in Plant Breeding. pgr. 2017; 4 (1) :1-24
URL: http://journals.lu.ac.ir/pgr/article-1-77-fa.html

اکبرپور امیدعلی. کاربرد برآوردگر‌های مؤلفه‌های واریانس در به‌نژادی گیاهان. پژوهش‎های ژنتیک گیاهی. 1396; 4 (1) :1-24

URL: http://journals.lu.ac.ir/pgr/article-1-77-fa.html



دوره 4، شماره 1 - ( 6-1396 ) برگشت به فهرست نسخه ها
مجله پژوهش های ژنتیک گیاهی Journal of Plant Genetic Research
Persian site map - English site map - Created in 0.1 seconds with 31 queries by YEKTAWEB 3647