1. Bieleski, R. (1973). Phosphate pools, phosphate transport, and phosphate availability. Annual review of plant physiology, 24: 225-252. 2. Dai, F., Qiu, L., Ye, L., Wu, D., Zhou, M. and Zhang, G. (2011). Identification of a phytase gene in barley (Hordeum vulgare L.). PLoS ONE, 6: 1-8. 3. Ebadi, A. (2013). Construction of barley doubled haploid population microsatellite linkage map and identification of genetic regions associated with agronomic traits and some micronutrients accumulation. Ph.D. Thesis, Faculty of Agriculture, Tabriz University, Tabriz, Iran (In Persian). 4. Fageria, N., Baligar, V. and Li, Y. (2008). The role of nutrient efficient plants in improving crop yields in the twenty first century. Journal of plant nutrition, 31: 1121-1157. 5. Holford, I.C.R. (1997). Soil phosphorus its measurement and its uptake by plants. Australian Journal of Soil Research., 35: 227-239. 6. Hu, B., Wu, P., Liao, C., Zhang, W. and Ni, J. (2001). QTLs and epistasis underlying activity of acid phosphatase under phosphorus sufficient and deficient condition in rice (Oryza sativa L.). Plant and Soil, 230: 99-105. 7. Kalendar, R. and Schulman, A.H. (2007). IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols, 1: 2478-2484. 8. Kjaer, B. and Jensen, J. (1995). The inheritance of nitrogen and phosphorus content in barley analysed by genetic markers. Hereditas, 123: 109-119. 9. Lorieux, M. (2012). MapDisto: fast and efficient computation of genetic linkage maps. Molecular Breeding, 30: 1231-1235. 10. Lynch, J.P. (2007). Turner review no. 14. Roots of the second green revolution. Australian Journal of Botany, 55: 493-512. 11. Martin, J.H., Leonard, W.H. and Stamp, D.L. (1976). Principles of Field Crop Production, 3th edn, Collier Macmillan, Toronto, Canada. 12. Raghothama, K. (1999). Phosphate acquisition. Annual review of plant biology, 50: 665-693. Reiter, R.S., Coors, J., Sussman, M. and Gabelman, W. (1991). Genetic analysis of tolerance to low-phosphorus stress in maize using restriction fragment length polymorphisms. Theoretical and Applied Genetics, 82: 561-568. 13. Saghai-Maroof, M.A., Soliman, K., Tpregensen, R.A. and Allard, R.W. (1984). Ribosomal DNA spacer-lenth polymorphism in barley: Mendelian inheritance chromosomal location and population dynamics. Proceeding of the National Academy of Sciences of the United States of America. 81: 8018-8014. 14. Schachtman, D.P., Reid, R.J. and Ayling, S.M. (1998). Phosphorus uptake by plants: from soil to cell. Plant physiology, 116: 447-453. 15. Shi, R., Li, H., Tong, Y., Jing, R., Zhang, F. and Zou, C. (2008). Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant and Soil, 306: 104-95. 16. Su, J.-Y., Zheng, Q., Li, H.-W., Li, B., Jing, R.-L., Tong, Y.-P. and Li, Z.-S. (2009). Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Science, 176: 824-836. 17. Su, J., Xiao, Y., Li, M., Liu, Q., Li, B., Tong, Y., Jia, J. and Li, Z. (2006). Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant and Soil, 281: 25-36. 18. Wang, S., Basten, C.J. and Zeng, Z-B. (2012). Windows QTL Cartographer V2.5-011. Raleigh, NC: Department of Statistics, State University, North Carolina. 19. Wissuwa, M., Yano, M. and Ae, N. (1998). Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theoretical and Applied Genetics, 97: 777-783. 20. Zhu, J., Kaeppler, S.M. and Lynch, J.P. (2005). Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant and Soil, 270: 299-310.
|