[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
فهرست داوران همکار::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
ISSN
شاپای آنلاین: ISSN 2676-7309
شاپای چاپی: ISSN 2383-1367
..




 
..
:: دوره 11، شماره 1 - ( 1403 ) ::
جلد 11 شماره 1 صفحات 136-121 برگشت به فهرست نسخه ها
شناسایی و بررسی بیان برخی از اعضای خانواده‌های ژنی RLP و RLK در ترنسکریپتوم پیاز زعفران آلوده به بیماری پوسیدگی فوزاریومی
فاطمه حاتمی ، فرهاد نظریان فیروزآبادی* ، سید سجاد سهرابی ، میترا خادمی
گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد ، khademi.m@lu.ac.ir
چکیده:   (338 مشاهده)
زعفران (.L Crocus sativus) نه‌تنها یکی از ارزشمندترین محصولات کشاورزی ایران و جهان به‌‌شمار می‌آید، بلکه جایگاه ویژه‌ای در بین محصولات صادراتی و صنعتی ایران دارد. تکثیر این گیاه از طریق بنه صورت می‌گیرد از این‌رو، جلوگیری از آلودگی بنههای زعفران با بیمارگرها، چالشی مهم برای حفظ کیفیت و عملکرد محصول زعفران است. بنابراین، بررسی سازوکارهای ژنتیکی مربوط به واکنش گیاه زعفران به بیمارگر‌های قارچی از جمله عامل پوسیدگی فوزاریومی بنه زعفران (Fusarium oxysporum)، بسیار حائز اهمیت است. با توجه به اینکه گیاهان برای دفاع از خود طیف وسیعی از ژنهای مقاومت را بیان میکنند و در این بین، نقش ژنهای مربوط به مسیر PTI (PTI :Pattern-Triggered Immunity) همانند ژنهای خانواده LysM-RLK در مقاومت به بیمارگرها بسیار مهم است؛ از این‌رو در این مطالعه ترنسکریپتوم بنههای زعفران آلوده به بیمارگر Fusarium oxysporum به منظور شناسایی و بررسی ژن‌های متعلق به خانوادههای ژنی RLP و RLK، مورد مطالعه قرار گرفت. در مجموع، 45 ژن کدکننده گیرنده‌های (Receptors) مسیر PTI در ترنسکریپتوم زعفران شناسایی شدند که از این تعداد 40 توالی متعلق به خانواده RLP (Receptor-like proteins) و 5 توالی متعلق به خانواده RLK (Receptor-like kinases) بودند. بررسی بیان اعضای این خانوادههای ژنی نشان داد که بیشترین بیان به‌ترتیب مربوط به توالی‌های Contig-41583 (RLP) و Contig-61879 (RLK) در بافتهای کلاله و پیاز زعفران بود. همچنین افزایش بیان معنی‌داری این ژن‌ها در نمونه‌های آلوده نسبت به نمونه شاهد مشخص شد. علاوه بر این، نتایج سنجش بیان ژن‌های انتخاب شده (Contig-41583 و Contig-61879) با استفاده از روش qRT-PCR نشان داد که ژن‌های مورد بررسی در تیمار 72 ساعت پس از آلودگی نسبت به تیمار 48 ساعت بیان بالاتری داشته‌اند. یافته‌های این مطالعه نشان میدهد که پروتئینهای RLK به دلیل وجود موتیف LysM عملکردی حیاتی در تعامل بین زعفران و بیمارگر دارد. اتصال موتیف LysM به پپتیدوگلیکانهای باکتریایی یا کیتینهای دیواره برخی قارچها و اوومیستها سبب تحریک پاسخهای ایمنی گیاه میشود. بهطور کلی، یافتههای این مطالعه در درک ماهیت اختصاصی روابط بین بیمارگر و گیاه حائز اهمیت بوده و میتواند در شناخت مسیر ایمنی PTI مفید باشد.
واژه‌های کلیدی: ایمنی ذاتی، کیتین، فوزاریوم، مسیر ایمنی PTI
متن کامل [PDF 964 kb]   (27 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژنتیک مولکولی
فهرست منابع
1. Abedi, A., Hajiahmadi, Z., Kordrostami, M., Esmaeel, Q. and Jacquard, C. (2021). Analyses of lysin-motif receptor-like kinase (lysm-rlk) gene family in allotetraploid brassica napus l. and its progenitor species: an in silico study. Cells, 11: 37. [DOI:10.3390/cells11010037]
2. Antolín-Lovera, M., Ried, M.K., Binder, A. and Parniske, M. (2012). Receptor kinase signaling pathways in plant-microbe interactions. Annual Review of Phytopathology, 50: 451-473. [DOI:10.1146/annurev-phyto-081211-173002]
3. Bhagat, N., Magotra, S., Gupta, R., Sharma, S., Verma, S., Verma, P.K., Ali, T., Shree, A. and Vakhlu, J. (2022a). Invasion and colonization of pathogenic Fusarium oxysporum R1 in Crocus sativus L. during corm rot disease progression. Journal of Fungi, 8: 1246. [DOI:10.3390/jof8121246]
4. Bhagat, N., Mansotra, R. and Patel, K. (2022b). Saffron-Fusarium oxysporum R1 dual transcriptomics unravels, defense mechanism of saffron and robust pathogenicity of Fusarium oxysporum R1. [DOI:10.21203/rs.3.rs-2132821/v1]
5. Cui, H., Tsuda, K. and Parker, J.E. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annual Review of Plant Biology, 66: 487-511. [DOI:10.1146/annurev-arplant-050213-040012]
6. Darvishian, A., Nazarian-Firouzabadi, F., Darvishnia, M. and Ismaili, A. (2022). identification of microsatellite molecular markers in saffron (Crocus sativus L.) using RNA-Seq data. Saffron Agronomy and Technology, 10(2): 149-161 (In Persian).
7. Fallahzadeh, V. (2018). Innate immunity in plants. Genetic Engineering and Biosafety Journal, 6: 343-361 (In Persian).
8. Fan, F., Hamada, M., Li, N., Li, G. and Luo, C. (2017). Multiple fungicide resistance in Botrytis cinerea from greenhouse strawberries in Hubei Province, China. Plant Disease, 101: 601-606. [DOI:10.1094/PDIS-09-16-1227-RE]
9. Frusciante, S., Diretto, G., Bruno, M., Ferrante, P., Pietrella, M., Prado-Cabrero, A., Rubio-Moraga, A., Beyer, P., Gomez-Gomez, L. and Al-Babili, S. (2014). Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceedings of the National Academy of Sciences, 111: 12246-12251. [DOI:10.1073/pnas.1404629111]
10. Golmohammadi, F. (2014). Saffron and its farming, economic importance, export, medicinal characteristics and various uses in South Khorasan Province-East of Iran. International Journal of Farming and Allied Sciences, 3: 566-596.
11. Gupta, V., Sharma, A., Rai, P.K., Gupta, S.K., Singh, B., Sharma, S.K., Singh, S.K., Hussain, R., Razdan, V.K. and Kumar, D. (2021). Corm rot of saffron: Epidemiology and management. Agronomy, 11: 339. [DOI:10.3390/agronomy11020339]
12. Joshi, R. (2018). A review of Fusarium oxysporum on its plant interaction and industrial use. Journal of Medicinal Plants Studies, 6: 112-115. [DOI:10.22271/plants.2018.v6.i3b.07]
13. Khaledi, N. (2020). Evaluation of cell wall degrading enzymes of Fusarium species associated with root and corm of saffron in South Khorasan province. Saffron Agronomy & Technology 8: 16 (In Persian).
14. Leppyanen, I.V., Pavlova, O.A., Vashurina, M.A., Bovin, A.D., Dolgikh, A.V., Shtark, O.Y., Sendersky, I.V., Dolgikh, V.V., Tikhonovich, I.A. and Dolgikh, E.A. (2021). Lysm receptor-like kinase lyk9 of Pisum Sativum L. may regulate plant responses to chitooligosaccharides differing in structure. International Journal of Molecular Sciences, 22: 711. [DOI:10.3390/ijms22020711]
15. Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X. and Wang, Y. (2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host & Microbe, 15: 329-338. [DOI:10.1016/j.chom.2014.02.009]
16. Li, Q., Qi, J., Qin, X., Hu, A., Fu, Y., Chen, S. and He, Y. (2021). Systematic identification of lysin-motif receptor-like kinases (LYKs) in Citrus sinensis, and analysis of their inducible involvements in citrus bacterial canker and phytohormone signaling. Scientia Horticulturae, 276: 109755. [DOI:10.1016/j.scienta.2020.109755]
17. Lu, Y. and Tsuda, K. (2021). Intimate association of PRR-and NLR-mediated signaling in plant immunity. Molecular Plant-Microbe Interactions, 34: 3-14. [DOI:10.1094/MPMI-08-20-0239-IA]
18. Luo, J., Zhang, A., Tan, K., Yang, S., Ma, X., Bai, X., Hou, Y. and Bai, J. (2023). Study on the interaction mechanism between Crocus sativus and Fusarium oxysporum based on dual RNA-seq. Plant Cell Reports, 42: 91-106. [DOI:10.1007/s00299-022-02938-y]
19. Mansotra, R., Ali, T., Bhagat, N. and Vakhlu, J. (2023). Injury and not the pathogen is the primary cause of corm rot in Crocus sativus (saffron). Frontiers in Plant Science, 14: 1074185. [DOI:10.3389/fpls.2023.1074185]
20. Meng, X. and Zhang, S. (2013). MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology, 51: 245-266. [DOI:10.1146/annurev-phyto-082712-102314]
21. Mentis, A.F.A., Dalamaga, M., Lu, C. and Polissiou, M.G. (2021). Saffron for "toning down" COVID-19-related cytokine storm: Hype or hope? A mini-review of current evidence. Metabolism Open, 11: 100111. [DOI:10.1016/j.metop.2021.100111]
22. Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H. and Shibuya, N. (2007). CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 104: 19613-19618. [DOI:10.1073/pnas.0705147104]
23. Morkunas, I., Marczak, Ł., Stachowiak, J. and Stobiecki, M. (2005). Sucrose-induced lupine defense against Fusarium oxysporum: Sucrose-stimulated accumulation of isoflavonoids as a defense response of lupine to Fusarium oxysporum. Plant Physiology and Biochemistry, 43: 363-373. [DOI:10.1016/j.plaphy.2005.02.011]
24. Nazarian-Firouzabadi, F., Joshi, S., Xue, H. and Kushalappa, A.C. (2019). Genome-wide in silico identification of LysM-RLK genes in potato (Solanum tuberosum L.). Molecular Biology Reports, 46: 5005-5017. [DOI:10.1007/s11033-019-04951-z]
25. Nürnberger, T. and Kemmerling, B. (2006). Receptor protein kinases-pattern recognition receptors in plant immunity. Trends in Plant Science, 11: 519-522. [DOI:10.1016/j.tplants.2006.09.005]
26. Qiu, W., Feechan, A. and Dry, I. (2015). Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Horticulture Research, 2: 15020. [DOI:10.1038/hortres.2015.20]
27. Sattler, S.E. and Funnell-Harris, D.L. (2013). Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens? Frontiers in Plant Science, 4: 70. [DOI:10.3389/fpls.2013.00070]
28. Shiu, S.H., Karlowski, W.M., Pan, R., Tzeng, Y.H., Mayer, K.F. and Li, W.H. (2004). Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. The plant cell, 16: 1220-1234. [DOI:10.1105/tpc.020834]
29. Sohrabi, S.S., Sohrabi, S.M., Mousavi, S.K. and Mohammadi, M. (2020). Identification, sequencing and stability evaluation of eight reference genes in saffron (Crocus sativus L.). Plan Genetic Researches, 7(1): 127-144 (In Persian). [DOI:10.52547/pgr.7.1.8]
30. Steinkellner, S., Mammerler, R. and Vierheilig, H. (2008). Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains. European Journal of Plant Pathology, 122: 395-401. [DOI:10.1007/s10658-008-9306-1]
31. Taghikhani, S., Ramshini, H., Sadat-Noori, S.A., Lotfi, M., Izadi Darbakdi, A., Sousaraei, N. and Varvani Farahani, A. (2018). SNP marker assisted selection for identification of fusarium resistant melon plants. Plant Genetic Researches, 5(1): 63-76 (In Persian). [DOI:10.29252/pgr.5.1.63]
32. Thrane, U. (1990). Grouping Fusarium section Discolor isolates by statistical analysis of quantitative high performance liquid chromatographic data on secondary metabolite production. Journal of Microbiological Methods, 12: 23-39. [DOI:10.1016/0167-7012(90)90004-P]
33. Tirnaz, S., Bayer, P.E., Inturrisi, F., Zhang, F., Yang, H., Dolatabadian, A., Neik, T.X., Severn-Ellis, A., Patel, D.A. and Ibrahim, M.I. (2020). Resistance gene analogs in the Brassicaceae: Identification, characterization, distribution, and evolution. Plant Physiology, 184: 909-922. [DOI:10.1104/pp.20.00835]
34. Tombuloglu, G., Tombuloglu, H., Cevik, E. and Sabit, H. (2019). Genome-wide identification of Lysin-Motif Receptor-Like Kinase (LysM-RLK) gene family in Brachypodium distachyon and docking analysis of chitin/LYK binding. Physiological and Molecular Plant Pathology, 106: 217-225. [DOI:10.1016/j.pmpp.2019.03.002]
35. Williams, H. (1996). Root and stem rot of cucumber caused by Fusarium oxysporum f. sp. radicis-cucumerinum f. sp. nov. Plant Disease, 80: 313--316. [DOI:10.1094/PD-80-0313]
36. Yang, H., Bayer, P.E., Tirnaz, S., Edwards, D. and Batley, J. (2020). Genome-wide identification and evolution of receptor-like kinases (RLKs) and receptor like proteins (RLPs) in Brassica juncea. Biology, 10: 17. [DOI:10.3390/biology10010017]
37. Yu, X., Feng, B., He, P. and Shan, L. (2017). From chaos to harmony: responses and signaling upon microbial pattern recognition. Annual Review of Phytopathology, 55: 109-137. [DOI:10.1146/annurev-phyto-080516-035649]
38. Zhang, X.C., Wu, X., Findley, S., Wan, J., Libault, M., Nguyen, H.T., Cannon, S.B. and Stacey, G. (2007). Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiology, 144: 623-636. [DOI:10.1104/pp.107.097097]
39. Zipfel, C. (2014). Plant pattern-recognition receptors. Trends in Immunology, 35: 345-351. [DOI:10.1016/j.it.2014.05.004]
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hatami F, Nazarian-Firouzabadi F, Sohrabi S S, Khademi M. Identification and Expression Analysis of RLP and RLK Gene Family Members in Transcriptome of Saffron Infected with Fusarium Oxysporum Corm Rot. pgr 2024; 11 (1) :121-136
URL: http://pgr.lu.ac.ir/article-1-313-fa.html

حاتمی فاطمه، نظریان فیروزآبادی فرهاد، سهرابی سید سجاد، خادمی میترا. شناسایی و بررسی بیان برخی از اعضای خانواده‌های ژنی RLP و RLK در ترنسکریپتوم پیاز زعفران آلوده به بیماری پوسیدگی فوزاریومی. پژوهش های ژنتیک گیاهی. 1403; 11 (1) :121-136

URL: http://pgr.lu.ac.ir/article-1-313-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 11، شماره 1 - ( 1403 ) برگشت به فهرست نسخه ها
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 40 queries by YEKTAWEB 4657