[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
فهرست داوران همکار::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
ISSN
شاپای آنلاین: ISSN 2676-7309
شاپای چاپی: ISSN 2383-1367
..




 
..
:: دوره 10، شماره 2 - ( 1402 ) ::
جلد 10 شماره 2 صفحات 18-1 برگشت به فهرست نسخه ها
طراحی و بیان پروتئین سه‌جزئی mGLP1-DARPin-Pen با پتانسیل مصرف خوراکی برای درمان دیابت نوع 2 در کلروپلاست توتون
مریم احساسات وطن ، بهرام باغبان کهنه‌روز*
گروه به‌نژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه تبریز، تبریز ، bahrambaghban.kr@tabrizu.ac.ir
چکیده:   (2401 مشاهده)
شیوع جهانی دیابت نوع 2 به‌طور مداوم در حال افزایش بوده و در حال حاضر هیچ درمان قطعی برای دیابت نوع 2 وجود ندارد. پپتید شبه گلوکاگون-1 (GLP-1) به‌عنوان یک هورمون طبیعی اینکرتینی کوچک تولید انسولین را به شیوه‌ی وابسته به گلوکز افزایش می‌دهد. با این حال، نیمه‌عمر بسیار کوتاه GLP-1 کاربرد درمانی آن را محدود می‌کند. از دارپین متصل شونده به آلبومین می‌توان برای افزایش نیمه‌عمر سرمی پروتئین‌های دارویی، پپتیدها و ترکیبات کوچک استفاده کرد. در این مطالعه، یک نسخه طولانی اثر با پتانسیل خوراکی از آگونیست گیرنده GLP-1 شامل GLP-1 مقاوم به پروتئاز، به‌صورت همجوش با دارپین متصل شونده به آلبومین و پنتراتین به‌عنوان پپتید نفوذکننده به سلول، به‌صورت کپسوله شده در کلروپلاست برای محافظت در برابر سیستم گوارش در سلول‌های گیاهی توتون بیان شد. تراریختی موفق کلروپلاست‌های توتون با ژن‌های رمزکننده پروتئین همجوشی به‌واسطه ناقل‌ کلروپلاستی pPRV111A و با استفاده از تفنگ ژنی انجام شد. گیاهان ترانسپلاستوم هموپلاسم پس از سه دوره گزینش در محیط گزینش حاوی 500 میلی‌گرم در لیتر از اسپکتینومایسین و استرپتومایسین به‌دست آمدند. درج تراژن و وضعیت هموپلاسمی‌ در گیاهان ترانسپلاستوم توسط PCR و لکه‌گذاری سادرن تأیید گردید. آزمون لکه‌گذاری وسترن تجمع پروتئین همجوشی سه‌جزئی mGLP1-DARPin-Pen در گیاهان ترانسپلاستوم را تأیید نمود و محتوی پروتئین همجوشی تولید شده در کلروپلاست گیاهان ترانسپلاستوم با استفاده از الایزا، 8/21 درصد پروتئین محلول کل برگ برآورد شد. بیان موفق پروتئین همجوشی طراحی شده در این مطالعه نشان می‌دهد که تولید GLP-1 در گیاهان، می‌تواند یک شکل ارزان ‌قیمت و خوراکی از این دارو را برای درمان دیابت نوع 2 فراهم کند.
واژه‌های کلیدی: پپتید شبه گلوکاگون-1، تراریختی کلروپلاستی، ترانسپلاستوم، توتون، دیابت نوع 2
متن کامل [PDF 1571 kb]   (442 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژنتیک مولکولی
فهرست منابع
1. Arntzen, C. (2015). Plant‐made pharmaceuticals: from 'edible vaccines' to ebola therapeutics. Plant Biotechnology Journal, 13: 1013. [DOI:10.1111/pbi.12460]
2. Biemelt, S. and Sonnewald, U. (2005). Molecular Farming in Plants. Nature Encyclopedia of Life Sciences. Nature Publishing Group, London, UK. [DOI:10.1038/npg.els.0003365]
3. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. [DOI:10.1006/abio.1976.9999]
4. Brown, T.D., Whitehead, K.A. and Mitragotri, S. (2020). Materials for oral delivery of proteins and peptides. Nature Reviews Materials, 5: 127-148. [DOI:10.1038/s41578-019-0156-6]
5. Bush, M., Matthews, J., De Boever, E., Dobbins, R., Hodge, R., Walker, S., Holland, M., Gutierrez, M. and Stewart, M. (2009). Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long‐acting glucagon‐like peptide‐1 mimetic, in healthy subjects. Diabetes, Obesity and Metabolism, 11: 498-505. [DOI:10.1111/j.1463-1326.2008.00992.x]
6. Caputi, A.P. and Navarra, P. (2020). Beyond antibodies: ankyrins and DARPins. From basic research to drug approval. Current Opinion Pharmacolgy, 51: 93-101. [DOI:10.1016/j.coph.2020.05.004]
7. Chen, P., Caldwell, C.G., Mathvink, R.J., Leiting, B., Marsilio, F., Patel, R.A., Wu, J.K., He, H., Lyons, K.A. and Thornberry, N.A. (2007). Imidazopiperidine amides as dipeptidyl peptidase IV inhibitors for the treatment of diabetes. Bioorganic & Medicinal Chemistry Letters, 17: 5853-5857. [DOI:10.1016/j.bmcl.2007.08.030]
8. Collaborators, G. and Ärnlöv, J. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396: 1223-1249.
9. Collado Camps, E., van Lith, S.A., Kip, A., Frielink, C., Joosten, L., Brock, R. and Gotthardt, M. (2023). Conjugation to a cell-penetrating peptide drives the tumour accumulation of the GLP1R antagonist exendin (9-39). European Journal of Nuclear Medicine and Molecular Imaging, 50: 996-1004. [DOI:10.1007/s00259-022-06041-y]
10. Daniell, H. (2006). Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnology Journal: Healthcare Nutrition Technology, 1: 1071-1079. [DOI:10.1002/biot.200600145]
11. Daniell, H., Singh, N.D., Mason, H. and Streatfield, S.J. (2009). Plant-made vaccine antigens and biopharmaceuticals. Trends in Plant Science, 14: 669-679. [DOI:10.1016/j.tplants.2009.09.009]
12. Darji, M.A., Lalge, R.M., Marathe, S.P., Mulay, T.D., Fatima, T., Alshammari, A., Lee, H.K., Repka, M.A. and Narasimha Murthy, S. (2018). Excipient stability in oral solid dosage forms: a review. Aaps Pharmscitech, 19: 12-26. Dibonaventura, M.D., Wagner, J.S., Girman, C.J., Brodovicz, K., Zhang, Q., Qiu, Y., Pentakota, S.R. and Radican, L. (2010). Multinational Internet-based survey of patient preference for newer oral or injectable Type 2 diabetes medication. Patient Prefer Adherence, 4: 397-406. https://doi.org/10.2147/PPA.S14477 [DOI:10.1208/s12249-017-0864-4]
13. Doyle, J.J. and Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochemical Bulletin, 19: 11-15.
14. Ehsasatvatan, M. and Baghban Kohnehrouz, B. (2024). A new trivalent recombinant protein for type 2 diabetes mellitus with oral delivery potential: design, expression, and experimental validation. Journal of Biomolecular Structure and Dynamics.1-16. [DOI:10.1080/07391102.2024.2329290]
15. Ehsasatvatan, M. and Baghban Kohnehrouz, B. (2023a). Designing and computational analyzing of chimeric long-lasting GLP-1 receptor agonists for type 2 diabetes. Scientific Reports, 13: 17778. [DOI:10.1038/s41598-023-45185-1]
16. Ehsasatvatan, M. and Baghban Kohnehrouz, B. (2023b). Homoplasmic stability and cytoplasmic inheritence of DARPin G3 scaffold protein in generative and vegetative propagation of transplastoic tobacco plants. Plant Genetic Researches, 9: 1-14 (In Persian).
17. Ehsasatvatan, M. and Kohnehrouz, B. (2023c). Effect of linker's length and sequence on the structure and stability of mGLP-1-DARPin fusion protein for treatment of type 2 diabetes: a computational study. Yafteh, 25: 26-47 (In Persian). [DOI:10.32592/Yafteh.2023.25.2.26]
18. Ehsasatvatan, M. and Kohnehrouz, B.B. (2023d). The lyophilized chloroplasts store synthetic DARPin G3 as bioactive encapsulated organelles. Journal of Biological Engineering, 17: 63. [DOI:10.1186/s13036-023-00383-3]
19. Ehsasatvatan, M., Kohnehrouz, B.B., Gholizadeh, A., Ofoghi, H. and Shanehbandi, D. (2022a). Physical and biologically effective parameters in developing transplastomic tobacco plants by particle bombardment method using PDS-1000/He. Genetic Engineering and Biosafety Journal, 10: 237-252 (In Persian).
20. Ehsasatvatan, M., Kohnehrouz, B.B., Gholizadeh, A., Ofoghi, H. and Shanehbandi, D. (2022b). The production of the first functional antibody mimetic in higher plants: the chloroplast makes the DARPin G3 for HER2 imaging in oncology. Biological Research, 55: 1-18. [DOI:10.1186/s40659-022-00400-7]
21. Eissa, N.G., Elsabahy, M. and Allam, A. (2021). Engineering of smart nanoconstructs for delivery of glucagon-like peptide-1 analogs. International Journal of Pharmaceutics, 597: 1-13. [DOI:10.1016/j.ijpharm.2021.120317]
22. Elbrønd, B., Jakobsen, G., Larsen, S., Agersø, H., Jensen, L.B., Rolan, P., Sturis, J., Hatorp, V. and Zdravkovic, M. (2002). Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care, 25: 1398-1404. [DOI:10.2337/diacare.25.8.1398]
23. Flint, H.J., Scott, K.P., Duncan, S.H., Louis, P. and Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3: 289-306. [DOI:10.4161/gmic.19897]
24. Gleeson, J.P., Fein, K.C. and Whitehead, K.A. (2021). Oral delivery of peptide therapeutics in infants: Challenges and opportunities. Advanced Drug Delivery Reviews, 173: 112-124. [DOI:10.1016/j.addr.2021.03.011]
25. Goldstein, R., Sosabowski, J., Livanos, M., Leyton, J., Vigor, K., Bhavsar, G., Nagy-Davidescu, G., Rashid, M., Miranda, E. and Yeung, J. (2015). Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging. European Journal of Nuclear Medicine and Molecular Imaging, 42: 288-301. [DOI:10.1007/s00259-014-2940-2]
26. Grząśko, N., Knop, S., Goldschmidt, H., Raab, M.S., Dürig, J., Bringhen, S., D'Agostino, M., Gamberi, B., Rivolti, E. and Vacca, A. (2019). The MP0250-CP201 mirror study: a phase 2 study update of MP0250 plus bortezomib and dexamethasone in relapse/refractory multiple myeloma (RRMM) patients previously exposed to proteasome inhibitors and immunomodulatory drugs. Blood, 134: 1899. [DOI:10.1182/blood-2019-129827]
27. Hamman, J.H., andSteenekamp, J.H. (2011). Oral peptide drug delivery: strategies to overcome challenges. In: Castanho, M. and Santos, N.C., Eds., Peptide Drug Discovery and Development: Translational Research in Academia and Industry, pp. 71-90. Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, GE. Herzog, R.W., Nichols, T.C., Su, J., Zhang, B., Sherman, A., Merricks, E.P., Raymer, R., Perrin, G.Q., Häger, M. and Wiinberg, B. (2017). Oral tolerance induction in hemophilia B dogs fed with transplastomic lettuce. Molecular Therapy, 25: 512-522. https://doi.org/10.1016/j.ymthe.2016.11.009 [DOI:10.1002/9783527636730.ch3]
28. Johnson, L.M., Barrick, S., Hager, M.V., McFedries, A., Homan, E.A., Rabaglia, M.E., Keller, M.P., Attie, A.D., Saghatelian, A. and Bisello, A. (2014). A potent α/β-peptide analogue of GLP-1 with prolonged action in vivo. Journal of the American Chemical Society, 136: 12848-12851. [DOI:10.1021/ja507168t]
29. Kieffer, T.J., McIntosh, C.H. and Pederson, R.A. (1995). Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology, 136: 3585-3596. [DOI:10.1210/endo.136.8.7628397]
30. Kim, B.J., Zhou, J., Martin, B., Carlson, O.D., Maudsley, S., Greig, N.H., Mattson, M.P., Ladenheim, E.E., Wustner, J. and Turner, A. (2010). Transferrin fusion technology: a novel approach to prolonging biological half-life of insulinotropic peptides. Journal of Pharmacology and Experimental Therapeutics, 334: 682-692. [DOI:10.1124/jpet.110.166470]
31. Kontermann, R.E. (2016). Half-life extended biotherapeutics. Expert Opinion on Biological Therapy, 16: 903-915. [DOI:10.1517/14712598.2016.1165661]
32. Kratz, F. (2008). Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release, 132: 171-183. [DOI:10.1016/j.jconrel.2008.05.010]
33. Kristensen, M., andNielsen, H.M. (2016). Cell‐penetrating peptides as carriers for oral delivery of biopharmaceuticals. Basic & Clinical Pharmacology & Toxicology, 118: 99-106. [DOI:10.1111/bcpt.12515]
34. Kushwaha, R.N., Srivastava, R., Mishra, A., Rawat, A.K., Srivastava, A.K., Haq, W. and Katti, S.B. (2015). Design, synthesis, biological screening, and molecular docking studies of piperazine‐derived constrained inhibitors of DPP‐IV for the treatment of type 2 diabetes. Chemical Biology & Drug Design, 85: 439-446. [DOI:10.1111/cbdd.12426]
35. Kwon, K.C., Nityanandam, R., New, J.S. and Daniell, H. (2013). Oral delivery of bioencapsulated exendin‐4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta‐TC 6 cells. Plant biotechnology journal, 11: 77-86. [DOI:10.1111/pbi.12008]
36. Laemmli, U. (1979). Slab gel electrophoresis: SDS-PAGE with discontinuous buffers. Nature, 227: 680-685. [DOI:10.1038/227680a0]
37. Limaye, A., Koya, V., Samsam, M. and Daniell, H. (2006). Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 20: 959. [DOI:10.1096/fj.05-5134fje]
38. Litwak, L., Goh, S.-Y., Hussein, Z., Malek, R., Prusty, V. and Khamseh, M.E. (2013). Prevalence of diabetes complications in people with type 2 diabetes mellitus and its association with baseline characteristics in the multinational A1chieve study. Diabetology & Metabolic Syndrome, 5: 1-10. [DOI:10.1186/1758-5996-5-57]
39. Luginbuhl, K.M., Schaal, J.L., Umstead, B., Mastria, E.M., Li, X., Banskota, S., Arnold, S., Feinglos, M., D'Alessio, D. and Chilkoti, A. (2017). One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. Nature Biomedical Engineering, 1: 1-14. [DOI:10.1038/s41551-017-0078]
40. Madsbad, S., Kielgast, U., Asmar, M., Deacon, C.F., Torekov, S.S. and Holst, J. (2011). An overview of once‐weekly glucagon‐like peptide‐1 receptor agonists-available efficacy and safety data and perspectives for the future. Diabetes, Obesity and Metabolism, 13: 394-407. [DOI:10.1111/j.1463-1326.2011.01357.x]
41. Madsen, K., Knudsen, L.B., Agersoe, H., Nielsen, P.F., Thøgersen, H., Wilken, M. and Johansen, N.L. (2007). Structure− activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives: importance of fatty acid length, polarity, and bulkiness. Journal of Medicinal Chemistry, 50: 6126-6132. [DOI:10.1021/jm070861j]
42. Mahato, R.I., Narang, A.S., Thoma, L. and Miller, D.D. (2003). Emerging trends in oral delivery of peptide and protein drugs. Critical Reviews™ in Therapeutic Drug Carrier Systems, 20: 153-214. Martens, E.C., Lowe, E.C., Chiang, H., Pudlo, N.A., Wu, M., McNulty, N.P., Abbott, D.W., Henrissat, B., Gilbert, H.J. and Bolam, D.N. (2011). Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biology, 9: 1-16. https://doi.org/10.1371/journal.pbio.1001221 [DOI:10.1615/CritRevTherDrugCarrierSyst.v20.i23.30]
43. McGregor, D.P. (2008). Discovering and improving novel peptide therapeutics. Current Opinion in Pharmacology, 8: 616-619. [DOI:10.1016/j.coph.2008.06.002]
44. Mojsov, S. (2000). Glucagon-like peptide-1 (GLP-1) and the control of glucose metabolism in mammals and teleost fish. American Zoologist, 40: 246-258. [DOI:10.1093/icb/40.2.246]
45. Reed, J., Bain, S. and Kanamarlapudi, V. (2020). Recent advances in understanding the role of glucagon-like peptide 1. F1000Res, 9: 239-253. [DOI:10.12688/f1000research.20602.1]
46. Rizzuti, M., Nizzardo, M., Zanetta, C., Ramirez, A. and Corti, S. (2015). Therapeutic applications of the cell-penetrating HIV-1 Tat peptide. Drug Discovery Today, 20: 76-85. [DOI:10.1016/j.drudis.2014.09.017]
47. Rodon, J., Omlin, A., Herbschleb, K.H., Garcia-Corbacho, J., Steiner, J., Dolado, I., Zitt, C., Feurstein, D., Turner, D. and Dawson, K.M. (2015). Abstract B25: First-in-human Phase I study to evaluate MP0250, a DARPin blocking HGF and VEGF, in patients with advanced solid tumors. Journal of Clinical Oncology, 39: 145-154. [DOI:10.1158/1535-7163.TARG-15-B25]
48. Scotti, N., Rigano, M.M. and Cardi, T. (2012). Production of foreign proteins using plastid transformation. Biotechnology Advances, 30: 387-397. [DOI:10.1016/j.biotechadv.2011.07.019]
49. Shah, R.B., Ahsan, F. and Khan, M.A. (2002). Oral delivery of proteins: progress and prognostication. Critical Reviews™ in Therapeutic Drug Carrier Systems, 19: 2416-2448. [DOI:10.1615/CritRevTherDrugCarrierSyst.v19.i2.20]
50. St Onge, E.L., and Miller, S.A. (2010). Albiglutide: a new GLP-1 analog for the treatment of type 2 diabetes. Expert Opinion on Biological Therapy. 10: 801-806 [DOI:10.1517/14712598.2010.481281]
51. Steiner, D., Merz, F.W., Sonderegger, I., Gulotti-Georgieva, M., Villemagne, D., Phillips, D.J., Forrer, P., Stumpp, M.T., Zitt, C. and Binz, H.K. (2017). Half-life extension using serum albumin-binding DARPin® domains. Protein Engineering, Design and Selection, 30: 583-591. [DOI:10.1093/protein/gzx022]
52. Strohl, W.R. (2015). Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs, 29: 215-239. [DOI:10.1007/s40259-015-0133-6]
53. Stumpp, M.T., Dawson, K.M. and Binz, H.K. (2020). Beyond antibodies: the DARPin(®) drug platform. BioDrugs, 34: 423-433. [DOI:10.1007/s40259-020-00429-8]
54. Su, J., Zhu, L., Sherman, A., Wang, X., Lin, S., Kamesh, A., Norikane, J.H., Streatfield, S.J., Herzog, R.W. and Daniell, H. (2015). Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials, 70: 84-93. [DOI:10.1016/j.biomaterials.2015.08.004]
55. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J.C. and Mbanya, J.C. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183: 109119. [DOI:10.1016/j.diabres.2021.109119]
56. Svab, Z., Hajdukiewicz, P. and Maliga, P. (1990). Stable transformation of plastids in higher plants. Proceedings of the National Academy of Sciences, 87: 8526-8530. [DOI:10.1073/pnas.87.21.8526]
57. Takahashi, S., Furusawa, H., Ueda, T. and Okahata, Y. (2013). Translation enhancer improves the ribosome liberation from translation initiation. Journal of the American Chemical Society, 135: 13096-13106. [DOI:10.1021/ja405967h]
58. Thum, A., Hupe-Sodmann, K., Göke, R., Voigt, K., Göke, B. and McGregor, G. (2002). Endoproteolysis by isolated membrane peptidases reveal metabolic stability of glucagon-like peptide-1 analogs, exendins-3 and-4. Experimental and Clinical Endocrinology & Diabetes, 110: 113-118. [DOI:10.1055/s-2002-29087]
59. Xiao, Y., Kwon, K.C., Hoffman, B.E., Kamesh, A., Jones, N.T., Herzog, R.W. and Daniell, H. (2016). Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells. Biomaterials, 80: 68-79. Xu, F., Wang, K.Y., Wang, N., Li, G. and Liu, D. (2017). Modified human glucagon-like peptide-1 (GLP-1) produced in E. coli has a long-acting therapeutic effect in type 2 diabetic mice. PLoS One, 12: 0181939. https://doi.org/10.1371/journal.pone.0181939 Yang, H., Liu, L. and Xu, F. (2016). The promises and challenges of fusion constructs in protein biochemistry and enzymology. Appl Microbiol Biotechnol, 100: 8273-8281. https://doi.org/10.1007/s00253-016-7795-y Yusibov, V., Streatfield, S.J. and Kushnir, N. (2011). Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Human Vaccines, 7: 313-321. https://doi.org/10.4161/hv.7.3.14207 Zahnd, C., Amstutz, P. and Plückthun, A. (2007). Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nature Methods, 4: 269-279. https://doi.org/10.1038/nmeth1003 Zoubenko, O.V., Allison, L.A., Svab, Z. and Maliga, P. (1994). Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Research, 22: 3819-3824. https://doi.org/10.1093%2Fnar%2F22.19.3819 Zarindast, Z., Nazarian-Firouzabadi, F. and Khademi, M. (2023). Expression and antimicrobial activity assessment of CBD-alfAFP recombinant peptide produced in tobacco hairy roots against plant pathogens. Plant Genetic Researches, 10: 43-60 (In Persian). http://dx.doi.org/10.22034/pgr.10.1.3 [DOI:10.1016/j.biomaterials.2015.11.051]
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ehsasatvatan M, Baghban Kohnehrouz B. Design and Expression of mGLP1-DARPin-Pen Trivalent Protein with Oral Potential for Type 2 Treatment in Tobacco Chloroplasts. pgr 2024; 10 (2) :1-18
URL: http://pgr.lu.ac.ir/article-1-297-fa.html

احساسات وطن مریم، باغبان کهنه‌روز بهرام. طراحی و بیان پروتئین سه‌جزئی mGLP1-DARPin-Pen با پتانسیل مصرف خوراکی برای درمان دیابت نوع 2 در کلروپلاست توتون. پژوهش های ژنتیک گیاهی. 1402; 10 (2) :1-18

URL: http://pgr.lu.ac.ir/article-1-297-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 10، شماره 2 - ( 1402 ) برگشت به فهرست نسخه ها
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 40 queries by YEKTAWEB 4657