Design and Expression of mGLP1-DARPin-Pen Trivalent Protein with Oral Potential for Type 2 Treatment in Tobacco Chloroplasts
|
Maryam Ehsasatvatan , Bahram Baghban Kohnehrouz * |
Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran , bahrambaghban.kr@tabrizu.ac.ir |
|
Abstract: (2195 Views) |
The global prevalence of type 2 diabetes mellitus is continuously increasing, and there is currently no definitive cure for type 2 diabetes. The potent glucagon-like peptide 1 (GLP-1), a natural small incretin hormone, enhances insulin secretion in a glucose-dependent manner. However, the exceedingly short half-life of GLP-1 limits its therapeutic applications. Albumin-binding DARPin can be used to increase the serum half-lives of therapeutic proteins, peptides, and small compounds. In this study, a long-acting GLP-1 agonist with oral delivery potential containing a protease-resistant GLP-1, an albumin-binding DARPin, and Penetratin as a fusion protein was expressed in a bioencapsulated form within tobacco chloroplasts to confer digestive system protection in plant cells. The successful transformation of tobacco chloroplasts with trivalent fusion protein-coding genes was conducted using a pPRV111A chloroplastic expression vector and a gene gun. Homoplasmic transplastomic plants were obtained after three rounds of selection in selection medium containing 500 mg/L spectinomycin and streptomycin. Transgene integration and homoplasmic status in the transplastomic plants were confirmed by PCR and Southern blot analyses. Western blot analysis confirmed the accumulation of the mGLP1-DARPin-Pen fusion protein in the chloroplasts of the transplastomic plants. The fusion protein content estimated by ELISA was 21.8% of the total soluble protein content in the transplastomic plants. The successful expression of the designed fusion protein indicated that the production of functional GLP-1 in plants may facilitate the development of a low-cost, orally deliverable form of this protein for the treatment of type 2 diabetes.
|
|
Keywords: Chloroplast transformation, Glucagon like peptide 1, Tobacco, Transplastomic, Type 2 diabetes mellitus |
|
Full-Text [PDF 1571 kb]
(395 Downloads)
|
Type of Study: Research |
Subject:
Molecular genetics
|
|
|
|
|
References |
1. Arntzen, C. (2015). Plant‐made pharmaceuticals: from 'edible vaccines' to ebola therapeutics. Plant Biotechnology Journal, 13: 1013. [ DOI:10.1111/pbi.12460] 2. Biemelt, S. and Sonnewald, U. (2005). Molecular Farming in Plants. Nature Encyclopedia of Life Sciences. Nature Publishing Group, London, UK. [ DOI:10.1038/npg.els.0003365] 3. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. [ DOI:10.1006/abio.1976.9999] 4. Brown, T.D., Whitehead, K.A. and Mitragotri, S. (2020). Materials for oral delivery of proteins and peptides. Nature Reviews Materials, 5: 127-148. [ DOI:10.1038/s41578-019-0156-6] 5. Bush, M., Matthews, J., De Boever, E., Dobbins, R., Hodge, R., Walker, S., Holland, M., Gutierrez, M. and Stewart, M. (2009). Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long‐acting glucagon‐like peptide‐1 mimetic, in healthy subjects. Diabetes, Obesity and Metabolism, 11: 498-505. [ DOI:10.1111/j.1463-1326.2008.00992.x] 6. Caputi, A.P. and Navarra, P. (2020). Beyond antibodies: ankyrins and DARPins. From basic research to drug approval. Current Opinion Pharmacolgy, 51: 93-101. [ DOI:10.1016/j.coph.2020.05.004] 7. Chen, P., Caldwell, C.G., Mathvink, R.J., Leiting, B., Marsilio, F., Patel, R.A., Wu, J.K., He, H., Lyons, K.A. and Thornberry, N.A. (2007). Imidazopiperidine amides as dipeptidyl peptidase IV inhibitors for the treatment of diabetes. Bioorganic & Medicinal Chemistry Letters, 17: 5853-5857. [ DOI:10.1016/j.bmcl.2007.08.030] 8. Collaborators, G. and Ärnlöv, J. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396: 1223-1249. 9. Collado Camps, E., van Lith, S.A., Kip, A., Frielink, C., Joosten, L., Brock, R. and Gotthardt, M. (2023). Conjugation to a cell-penetrating peptide drives the tumour accumulation of the GLP1R antagonist exendin (9-39). European Journal of Nuclear Medicine and Molecular Imaging, 50: 996-1004. [ DOI:10.1007/s00259-022-06041-y] 10. Daniell, H. (2006). Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnology Journal: Healthcare Nutrition Technology, 1: 1071-1079. [ DOI:10.1002/biot.200600145] 11. Daniell, H., Singh, N.D., Mason, H. and Streatfield, S.J. (2009). Plant-made vaccine antigens and biopharmaceuticals. Trends in Plant Science, 14: 669-679. [ DOI:10.1016/j.tplants.2009.09.009] 12. Darji, M.A., Lalge, R.M., Marathe, S.P., Mulay, T.D., Fatima, T., Alshammari, A., Lee, H.K., Repka, M.A. and Narasimha Murthy, S. (2018). Excipient stability in oral solid dosage forms: a review. Aaps Pharmscitech, 19: 12-26.
Dibonaventura, M.D., Wagner, J.S., Girman, C.J., Brodovicz, K., Zhang, Q., Qiu, Y., Pentakota, S.R. and Radican, L. (2010). Multinational Internet-based survey of patient preference for newer oral or injectable Type 2 diabetes medication. Patient Prefer Adherence, 4: 397-406.
https://doi.org/10.2147/PPA.S14477 [ DOI:10.1208/s12249-017-0864-4] 13. Doyle, J.J. and Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochemical Bulletin, 19: 11-15. 14. Ehsasatvatan, M. and Baghban Kohnehrouz, B. (2024). A new trivalent recombinant protein for type 2 diabetes mellitus with oral delivery potential: design, expression, and experimental validation. Journal of Biomolecular Structure and Dynamics.1-16. [ DOI:10.1080/07391102.2024.2329290] 15. Ehsasatvatan, M. and Baghban Kohnehrouz, B. (2023a). Designing and computational analyzing of chimeric long-lasting GLP-1 receptor agonists for type 2 diabetes. Scientific Reports, 13: 17778. [ DOI:10.1038/s41598-023-45185-1] 16. Ehsasatvatan, M. and Baghban Kohnehrouz, B. (2023b). Homoplasmic stability and cytoplasmic inheritence of DARPin G3 scaffold protein in generative and vegetative propagation of transplastoic tobacco plants. Plant Genetic Researches, 9: 1-14 (In Persian). 17. Ehsasatvatan, M. and Kohnehrouz, B. (2023c). Effect of linker's length and sequence on the structure and stability of mGLP-1-DARPin fusion protein for treatment of type 2 diabetes: a computational study. Yafteh, 25: 26-47 (In Persian). [ DOI:10.32592/Yafteh.2023.25.2.26] 18. Ehsasatvatan, M. and Kohnehrouz, B.B. (2023d). The lyophilized chloroplasts store synthetic DARPin G3 as bioactive encapsulated organelles. Journal of Biological Engineering, 17: 63. [ DOI:10.1186/s13036-023-00383-3] 19. Ehsasatvatan, M., Kohnehrouz, B.B., Gholizadeh, A., Ofoghi, H. and Shanehbandi, D. (2022a). Physical and biologically effective parameters in developing transplastomic tobacco plants by particle bombardment method using PDS-1000/He. Genetic Engineering and Biosafety Journal, 10: 237-252 (In Persian). 20. Ehsasatvatan, M., Kohnehrouz, B.B., Gholizadeh, A., Ofoghi, H. and Shanehbandi, D. (2022b). The production of the first functional antibody mimetic in higher plants: the chloroplast makes the DARPin G3 for HER2 imaging in oncology. Biological Research, 55: 1-18. [ DOI:10.1186/s40659-022-00400-7] 21. Eissa, N.G., Elsabahy, M. and Allam, A. (2021). Engineering of smart nanoconstructs for delivery of glucagon-like peptide-1 analogs. International Journal of Pharmaceutics, 597: 1-13. [ DOI:10.1016/j.ijpharm.2021.120317] 22. Elbrønd, B., Jakobsen, G., Larsen, S., Agersø, H., Jensen, L.B., Rolan, P., Sturis, J., Hatorp, V. and Zdravkovic, M. (2002). Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care, 25: 1398-1404. [ DOI:10.2337/diacare.25.8.1398] 23. Flint, H.J., Scott, K.P., Duncan, S.H., Louis, P. and Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3: 289-306. [ DOI:10.4161/gmic.19897] 24. Gleeson, J.P., Fein, K.C. and Whitehead, K.A. (2021). Oral delivery of peptide therapeutics in infants: Challenges and opportunities. Advanced Drug Delivery Reviews, 173: 112-124. [ DOI:10.1016/j.addr.2021.03.011] 25. Goldstein, R., Sosabowski, J., Livanos, M., Leyton, J., Vigor, K., Bhavsar, G., Nagy-Davidescu, G., Rashid, M., Miranda, E. and Yeung, J. (2015). Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging. European Journal of Nuclear Medicine and Molecular Imaging, 42: 288-301. [ DOI:10.1007/s00259-014-2940-2] 26. Grząśko, N., Knop, S., Goldschmidt, H., Raab, M.S., Dürig, J., Bringhen, S., D'Agostino, M., Gamberi, B., Rivolti, E. and Vacca, A. (2019). The MP0250-CP201 mirror study: a phase 2 study update of MP0250 plus bortezomib and dexamethasone in relapse/refractory multiple myeloma (RRMM) patients previously exposed to proteasome inhibitors and immunomodulatory drugs. Blood, 134: 1899. [ DOI:10.1182/blood-2019-129827] 27. Hamman, J.H., andSteenekamp, J.H. (2011). Oral peptide drug delivery: strategies to overcome challenges. In: Castanho, M. and Santos, N.C., Eds., Peptide Drug Discovery and Development: Translational Research in Academia and Industry, pp. 71-90. Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, GE.
Herzog, R.W., Nichols, T.C., Su, J., Zhang, B., Sherman, A., Merricks, E.P., Raymer, R., Perrin, G.Q., Häger, M. and Wiinberg, B. (2017). Oral tolerance induction in hemophilia B dogs fed with transplastomic lettuce. Molecular Therapy, 25: 512-522.
https://doi.org/10.1016/j.ymthe.2016.11.009 [ DOI:10.1002/9783527636730.ch3] 28. Johnson, L.M., Barrick, S., Hager, M.V., McFedries, A., Homan, E.A., Rabaglia, M.E., Keller, M.P., Attie, A.D., Saghatelian, A. and Bisello, A. (2014). A potent α/β-peptide analogue of GLP-1 with prolonged action in vivo. Journal of the American Chemical Society, 136: 12848-12851. [ DOI:10.1021/ja507168t] 29. Kieffer, T.J., McIntosh, C.H. and Pederson, R.A. (1995). Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology, 136: 3585-3596. [ DOI:10.1210/endo.136.8.7628397] 30. Kim, B.J., Zhou, J., Martin, B., Carlson, O.D., Maudsley, S., Greig, N.H., Mattson, M.P., Ladenheim, E.E., Wustner, J. and Turner, A. (2010). Transferrin fusion technology: a novel approach to prolonging biological half-life of insulinotropic peptides. Journal of Pharmacology and Experimental Therapeutics, 334: 682-692. [ DOI:10.1124/jpet.110.166470] 31. Kontermann, R.E. (2016). Half-life extended biotherapeutics. Expert Opinion on Biological Therapy, 16: 903-915. [ DOI:10.1517/14712598.2016.1165661] 32. Kratz, F. (2008). Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release, 132: 171-183. [ DOI:10.1016/j.jconrel.2008.05.010] 33. Kristensen, M., andNielsen, H.M. (2016). Cell‐penetrating peptides as carriers for oral delivery of biopharmaceuticals. Basic & Clinical Pharmacology & Toxicology, 118: 99-106. [ DOI:10.1111/bcpt.12515] 34. Kushwaha, R.N., Srivastava, R., Mishra, A., Rawat, A.K., Srivastava, A.K., Haq, W. and Katti, S.B. (2015). Design, synthesis, biological screening, and molecular docking studies of piperazine‐derived constrained inhibitors of DPP‐IV for the treatment of type 2 diabetes. Chemical Biology & Drug Design, 85: 439-446. [ DOI:10.1111/cbdd.12426] 35. Kwon, K.C., Nityanandam, R., New, J.S. and Daniell, H. (2013). Oral delivery of bioencapsulated exendin‐4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta‐TC 6 cells. Plant biotechnology journal, 11: 77-86. [ DOI:10.1111/pbi.12008] 36. Laemmli, U. (1979). Slab gel electrophoresis: SDS-PAGE with discontinuous buffers. Nature, 227: 680-685. [ DOI:10.1038/227680a0] 37. Limaye, A., Koya, V., Samsam, M. and Daniell, H. (2006). Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 20: 959. [ DOI:10.1096/fj.05-5134fje] 38. Litwak, L., Goh, S.-Y., Hussein, Z., Malek, R., Prusty, V. and Khamseh, M.E. (2013). Prevalence of diabetes complications in people with type 2 diabetes mellitus and its association with baseline characteristics in the multinational A1chieve study. Diabetology & Metabolic Syndrome, 5: 1-10. [ DOI:10.1186/1758-5996-5-57] 39. Luginbuhl, K.M., Schaal, J.L., Umstead, B., Mastria, E.M., Li, X., Banskota, S., Arnold, S., Feinglos, M., D'Alessio, D. and Chilkoti, A. (2017). One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. Nature Biomedical Engineering, 1: 1-14. [ DOI:10.1038/s41551-017-0078] 40. Madsbad, S., Kielgast, U., Asmar, M., Deacon, C.F., Torekov, S.S. and Holst, J. (2011). An overview of once‐weekly glucagon‐like peptide‐1 receptor agonists-available efficacy and safety data and perspectives for the future. Diabetes, Obesity and Metabolism, 13: 394-407. [ DOI:10.1111/j.1463-1326.2011.01357.x] 41. Madsen, K., Knudsen, L.B., Agersoe, H., Nielsen, P.F., Thøgersen, H., Wilken, M. and Johansen, N.L. (2007). Structure− activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives: importance of fatty acid length, polarity, and bulkiness. Journal of Medicinal Chemistry, 50: 6126-6132. [ DOI:10.1021/jm070861j] 42. Mahato, R.I., Narang, A.S., Thoma, L. and Miller, D.D. (2003). Emerging trends in oral delivery of peptide and protein drugs. Critical Reviews™ in Therapeutic Drug Carrier Systems, 20: 153-214.
Martens, E.C., Lowe, E.C., Chiang, H., Pudlo, N.A., Wu, M., McNulty, N.P., Abbott, D.W., Henrissat, B., Gilbert, H.J. and Bolam, D.N. (2011). Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biology, 9: 1-16.
https://doi.org/10.1371/journal.pbio.1001221 [ DOI:10.1615/CritRevTherDrugCarrierSyst.v20.i23.30] 43. McGregor, D.P. (2008). Discovering and improving novel peptide therapeutics. Current Opinion in Pharmacology, 8: 616-619. [ DOI:10.1016/j.coph.2008.06.002] 44. Mojsov, S. (2000). Glucagon-like peptide-1 (GLP-1) and the control of glucose metabolism in mammals and teleost fish. American Zoologist, 40: 246-258. [ DOI:10.1093/icb/40.2.246] 45. Reed, J., Bain, S. and Kanamarlapudi, V. (2020). Recent advances in understanding the role of glucagon-like peptide 1. F1000Res, 9: 239-253. [ DOI:10.12688/f1000research.20602.1] 46. Rizzuti, M., Nizzardo, M., Zanetta, C., Ramirez, A. and Corti, S. (2015). Therapeutic applications of the cell-penetrating HIV-1 Tat peptide. Drug Discovery Today, 20: 76-85. [ DOI:10.1016/j.drudis.2014.09.017] 47. Rodon, J., Omlin, A., Herbschleb, K.H., Garcia-Corbacho, J., Steiner, J., Dolado, I., Zitt, C., Feurstein, D., Turner, D. and Dawson, K.M. (2015). Abstract B25: First-in-human Phase I study to evaluate MP0250, a DARPin blocking HGF and VEGF, in patients with advanced solid tumors. Journal of Clinical Oncology, 39: 145-154. [ DOI:10.1158/1535-7163.TARG-15-B25] 48. Scotti, N., Rigano, M.M. and Cardi, T. (2012). Production of foreign proteins using plastid transformation. Biotechnology Advances, 30: 387-397. [ DOI:10.1016/j.biotechadv.2011.07.019] 49. Shah, R.B., Ahsan, F. and Khan, M.A. (2002). Oral delivery of proteins: progress and prognostication. Critical Reviews™ in Therapeutic Drug Carrier Systems, 19: 2416-2448. [ DOI:10.1615/CritRevTherDrugCarrierSyst.v19.i2.20] 50. St Onge, E.L., and Miller, S.A. (2010). Albiglutide: a new GLP-1 analog for the treatment of type 2 diabetes. Expert Opinion on Biological Therapy. 10: 801-806 [ DOI:10.1517/14712598.2010.481281] 51. Steiner, D., Merz, F.W., Sonderegger, I., Gulotti-Georgieva, M., Villemagne, D., Phillips, D.J., Forrer, P., Stumpp, M.T., Zitt, C. and Binz, H.K. (2017). Half-life extension using serum albumin-binding DARPin® domains. Protein Engineering, Design and Selection, 30: 583-591. [ DOI:10.1093/protein/gzx022] 52. Strohl, W.R. (2015). Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs, 29: 215-239. [ DOI:10.1007/s40259-015-0133-6] 53. Stumpp, M.T., Dawson, K.M. and Binz, H.K. (2020). Beyond antibodies: the DARPin(®) drug platform. BioDrugs, 34: 423-433. [ DOI:10.1007/s40259-020-00429-8] 54. Su, J., Zhu, L., Sherman, A., Wang, X., Lin, S., Kamesh, A., Norikane, J.H., Streatfield, S.J., Herzog, R.W. and Daniell, H. (2015). Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials, 70: 84-93. [ DOI:10.1016/j.biomaterials.2015.08.004] 55. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J.C. and Mbanya, J.C. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183: 109119. [ DOI:10.1016/j.diabres.2021.109119] 56. Svab, Z., Hajdukiewicz, P. and Maliga, P. (1990). Stable transformation of plastids in higher plants. Proceedings of the National Academy of Sciences, 87: 8526-8530. [ DOI:10.1073/pnas.87.21.8526] 57. Takahashi, S., Furusawa, H., Ueda, T. and Okahata, Y. (2013). Translation enhancer improves the ribosome liberation from translation initiation. Journal of the American Chemical Society, 135: 13096-13106. [ DOI:10.1021/ja405967h] 58. Thum, A., Hupe-Sodmann, K., Göke, R., Voigt, K., Göke, B. and McGregor, G. (2002). Endoproteolysis by isolated membrane peptidases reveal metabolic stability of glucagon-like peptide-1 analogs, exendins-3 and-4. Experimental and Clinical Endocrinology & Diabetes, 110: 113-118. [ DOI:10.1055/s-2002-29087] 59. Xiao, Y., Kwon, K.C., Hoffman, B.E., Kamesh, A., Jones, N.T., Herzog, R.W. and Daniell, H. (2016). Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells. Biomaterials, 80: 68-79.
Xu, F., Wang, K.Y., Wang, N., Li, G. and Liu, D. (2017). Modified human glucagon-like peptide-1 (GLP-1) produced in E. coli has a long-acting therapeutic effect in type 2 diabetic mice. PLoS One, 12: 0181939.
https://doi.org/10.1371/journal.pone.0181939
Yang, H., Liu, L. and Xu, F. (2016). The promises and challenges of fusion constructs in protein biochemistry and enzymology. Appl Microbiol Biotechnol, 100: 8273-8281.
https://doi.org/10.1007/s00253-016-7795-y
Yusibov, V., Streatfield, S.J. and Kushnir, N. (2011). Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Human Vaccines, 7: 313-321.
https://doi.org/10.4161/hv.7.3.14207
Zahnd, C., Amstutz, P. and Plückthun, A. (2007). Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nature Methods, 4: 269-279.
https://doi.org/10.1038/nmeth1003
Zoubenko, O.V., Allison, L.A., Svab, Z. and Maliga, P. (1994). Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Research, 22: 3819-3824.
https://doi.org/10.1093%2Fnar%2F22.19.3819
Zarindast, Z., Nazarian-Firouzabadi, F. and Khademi, M. (2023). Expression and antimicrobial activity assessment of CBD-alfAFP recombinant peptide produced in tobacco hairy roots against plant pathogens. Plant Genetic Researches, 10: 43-60 (In Persian).
http://dx.doi.org/10.22034/pgr.10.1.3 [ DOI:10.1016/j.biomaterials.2015.11.051]
|
|
Send email to the article author |
|
|
Ehsasatvatan M, Baghban Kohnehrouz B. Design and Expression of mGLP1-DARPin-Pen Trivalent Protein with Oral Potential for Type 2 Treatment in Tobacco Chloroplasts. pgr 2024; 10 (2) :1-18 URL: http://pgr.lu.ac.ir/article-1-297-en.html
|