[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 11, Issue 1 (2024) ::
pgr 2024, 11(1): 1-14 Back to browse issues page
The Effect of Iron Deficiency on the Expression of Genes Encoding Transcription Factors bZIP4, bZIP79, and bZIP97 in Bread Wheat (Triticum aestivum L.)
Fatemeh Asadzadeh , Babak Abdollahi Mandoulakani *
Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran , b.abdollahi@urmia.ac.ir
Abstract:   (398 Views)
To investigate the effect of iron deficiency stress on the expression of genes encoding bZIP4, bZIP79, and bZIP97 transcription factors in iron-efficient and -inefficient bread wheat cultivars, a factorial experiment was conducted in a completely randomized design with three replications in the research greenhouse of Urmia University. Falat (iron-inefficient) and Pishtaz (iron-efficient) cultivars were grown in iron deficiency and sufficiency conditions. The expression levels of genes mentioned above were measured using real time PCR technique in the leaves and roots of the cultivars at two growth stages: one month after germination (vegetative) and 30% of spiking (reproductive). The results revealed the highest increase in the relative expression of bZIP79 (more than 14-fold change) and bZIP97 (more than 3-fold change) in the leaves of iron-inefficient (Falat) and -efficient (Pishtaz) cultivars, respectively, at vegetative stage. The highest relative expression of bZIP4 was observed in the roots of iron-inefficient cultivars in the vegetative stage. This probably shows that bZIP4 might activate the transcription of the genes responsible for iron uptake from the soil. Increased expression of bZIP79 in the leaves of iron-efficient cultivar in the vegetative stage under iron deficiency conditions, indicates the involvement of this transcription factor in the activation of genes responsible for iron transfer from the leaves to the grain and other tissues. In general, this research helps understand the mechanism of plants coping with iron deficiency stress. Also, the identification of key bZIP transcription factors involved in the activation of genes responsible for iron absorption and transport in bread wheat plants provides the possibility of genetic manipulation of bread wheat cultivars to produce cultivars with a higher amount of iron in the grain
Keywords: bZIP transcription factors, Bread wheat, Iron deficiency, Real time PCR
Full-Text [PDF 778 kb]   (31 Downloads)    
Type of Study: Research | Subject: Molecular genetics
References
1. Abdoli, M. (2019). Remobilization of photoassimilates a strategy to deal with drought stress in wheat. Plant Production and Genetics, 2(1): 87-104 (In Persian).
2. Arkan, M., Mirakhorli, N., Shabani, L., Dababat, A.A. (2022). The effect of drought stress, Fusarium culmorum and Heterodera filipjevi and Their interactions on the expression pattern of Transcription factor gene nac69-3 in Bread wheat. Journal of Crop Breeding, 14(41): 42-52 (In Persian). [DOI:10.52547/jcb.14.41.42]
3. Ashrafzadeh, N. and Abdollahi Mandoulakani, B. (2023). The effect of Iron deficiency on the relative expression of genes encoding transcription factors bZIP56, WRKY1 and NAM-B1 in bread wheat (Triticum aestivum L.), Journal of Crop Breeding, 15(45): 194-204 (In Persian). [DOI:10.61186/jcb.15.45.194]
4. Assunção, A.G.L., Martins, P.D.C., De Folter, S., Vooijs, R., Schat, H. and Aarts, M.G.M. (2001). Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment, 24(2): 217-226. [DOI:10.1111/j.1365-3040.2001.00666.x]
5. Ayini, M., Khodakaramian, G., Mirzayi, H. and Esmailzadeh, A. (2014). Biological and abiotic stresses in plants. National Conference on Climate Change and Sustainable Development Engineering of Agriculture and Natural Resources, Tabriz, Iran.
6. Azizi, K., Chehregani Rad, A. and Soltani, J. (2022). Structural changes of root, stem and leaf tissues in Tritichum aestivum cv. Mihan, under drought stress. Cellular and Molecular Research (Iranian Journal of Biology), 35(3): 393-404 (In Persian).
7. Cole, C.R., Grant, F.K., Swaby-Ellis, E.D., Smith, J.L., Jacques, A., Northrop-Clewes, C.A. and Ziegler, T.R. (2010). Zinc and iron deficiency and their interrelations in low-income African American and Hispanic children in Atlanta. The American Journal of Clinical Nutrition, 91(4): 1027-1034. [DOI:10.3945/ajcn.2009.28089]
8. Ekhtiyari, M., and Abdollahi Mandoulakani, B. (2020). Effect of Zn deficiency stress on expression pattern of genes encoding bZIP4, bZIP79 and bZIP97 transcription factors in bread wheat (Triticum aestivum L.) cultivars. Iranian Journal of Crop Sciences, 21(4): 344-353 (In Persian). [DOI:10.29252/abj.21.4.344]
9. Evens, N.P., Buchner, P., Williams, L.E. and Hawkesford, M.J. (2017). The role of ZIP transporters and group F bZIP transcription factors in the Zn‐deficiency response of wheat (Triticum aestivum). The Plant Journal, 92(2): 291-304. [DOI:10.1111/tpj.13655]
10. Golestani Fard, A., Mir Seyed Hosseini, H., Aryan, A., Abbaszadeh Dahaji, P., Tafizi, M. and Salari Bardsiri, N. (2015). Changes of chemical forms of Zinc in the rhizosphere of some turnip and radish cultivars. Journal of Soil Management and Sustainable Production, 4(4): 193-214 (In Persian).
11. Hwang, I., Jung, H.J., Park, J.I., Yang, T.J., and Nou, I.S. (2014). Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response. Genomics, 104(3): 194-202. [DOI:10.1016/j.ygeno.2014.07.008]
12. Ivanov, R., Brumbarova, T. and Bauer, P. (2012). Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Molecular Plant, 5(1): 27-42. [DOI:10.1093/mp/ssr065]
13. Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T. and Kalhor, S. (2016). Investigating the short-term and long-term relationship between CO2 emissions and Food security in Iran. M.Sc. Thesis Faculty of Agriculture, Urmia University, Isfahan, Iran (In Persian).
14. Kavitha, P., Kuruvilla, S. and Mathew, M. (2015). Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiology and Biochemistry, 97: 165-174. [DOI:10.1016/j.plaphy.2015.10.005]
15. Liu, Y., He, Z., Appels, R. and Xia, X. (2012). Functional markers in wheat: current status and future prospects. Theoretical and Applied Genetics, 125: 1-10. [DOI:10.1007/s00122-012-1829-3]
16. López-Berges, M.S., Scheven, M.T., Hortschansky, P., Misslinger, M., Baldin, C., Gsaller, F. and Haas, H. (2021). The bZIP transcription factor HapX is post-translationally regulated to control iron homeostasis in Aspergillus fumigatus. International Journal of Molecular Sciences, 22(14): 7739. [DOI:10.3390/ijms22147739]
17. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4): 402-408. [DOI:10.1006/meth.2001.1262]
18. Lucena, J.J. (2006). Synthetic iron chelates to correct iron deficiency in plants. In: Barton, L.L. and Abadía, J., Eds., Iron Nutrition in Plants and Rhizospheric Microorganisms. pp.103-128. Springer, Dordrecht, NL. [DOI:10.1007/1-4020-4743-6_5]
19. Mahalleh, J.K. and Roshdi, M. (2008). Effect of foliar application of micro nutrients on quantitative and qualitative characteristics of 704 silage corn in Khoy. Seed and Plant Improvement Journal, 24(2): 281-293 (In Persian).
20. Malakouti, M.J. (2007). Zinc is a neglected element in the life cycle of Plants. Middle Eastern and Russian Journal of Plant Science and Biotechnology, 1(1): 1-12.
21. Maynard, D.N. (2007). Handbook of plant nutrition. Horticultural Science, 42(2): 422b-423. [DOI:10.21273/HORTSCI.42.2.422b]
22. Menkir, A. (2008). Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chemistry, 110(2): 454-464. [DOI:10.1016/j.foodchem.2008.02.025]
23. Mirzamasoumzadeh, B. and Mollasadeghi, V. (2013). Effects of osmotic stress on chlorophyll and proline different wheat cultivars. Journal of Research in Science Engineering and Technology, 1(1): 12-13.
24. Nakashima, K.H., Takasaki, J., Mizoi, K., Shinozaki and Yamaguchi-Shinozaki, K. (2012). NAC transcription factors in Plant abiotic stress responses. Biochimica et Biophysica Acta, 1819(2): 97-103.‏‏ [DOI:10.1016/j.bbagrm.2011.10.005]
25. Nasiri, E., Sabouri, A., Forghani, A. and Esfahani, M. (2019). Grouping of rice genotypes based on grain iron, zinc, manganese and protein and performance measurement of linked microsatellite markers. Plant Genetic Researches, 5(2): 73-84 (In Persian). [DOI:10.29252/pgr.5.2.73]
26. Nazri, A. Z., Griffin, J.H., Peaston, K.A., Alexander‐Webber, D.G., and Williams, L.E. (2017). F‐group bZIPs in barley-a role in Zn deficiency. Plant, Cell & Environment, 40(11): 2754-2770. [DOI:10.1111/pce.13045]
27. Nijhawan, A., Jain, M., Tyagi, A. K. and Khurana, J.P. (2008). Genomic survey and Gene expression analysis of the basic leucine zipper transcription factor family in Rice. Plant Physiology, 146(2): 333-350. [DOI:10.1104/pp.107.112821]
28. Rahaie, M., Gomarian, M., Alizadeh, H., Malboobi, M. A. and Naghavi, M.R. (2011). The expression analysis of transcription factors under long term salt stress in tolerant and susceptible wheat genotypes using reverse northern blot technique. 13(3): 580-595 (In Persian).
29. Ranhbar, F., Abdollahi Mandoulakani, B. and Ghasemzadeh, R. (2023). The effect of iron deficiency on the relative expression of genes encoding catalase, ascorbate peroxidase and polyphenol oxidase enzymes in bread wheat. Plant Genetic Researches, 10(1): 145-156 (In Persian). [DOI:10.22034/pgr.10.1.9]
30. Ruiz, J.M., Baghour, M. and Romero, L. (2000). Efficiency of the different genotypes of tomato in relation to foliar content of Fe and the response of some bioindicators. Journal of Plant Nutrition, 23(11-12): 1777-1786. [DOI:10.1080/01904160009382141]
31. Shimizu, H., Sato, K., Berberich, T., Miyazaki, A., Ozaki, R., Imani, R., Kusano, T. (2005). LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants. Plant and Cell Physiology, 46(10): 1623-34. [DOI:10.1093/pcp/pci178]
32. Sinclair, S.A., Senger, T., Talke, I.N., Cobbett, C.S., Haydon, M.J. and Kraemer, U. (2018). Systemic upregulation of MTP2-and HMA2-mediated Zn partitioning to the shoot supplements local Zn deficiency responses. The Plant Cell, 30(10): 2463-2479. [DOI:10.1105/tpc.18.00207]
33. Singh, S.P., Keller, B., Gruissem, W. and Bhullar, N.K. (2017). Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and Zinc levels in Wheat. Theoretical and Applied Genetics. 130(2): 283-292. [DOI:10.1007/s00122-016-2808-x]
34. Sreenivasulu, N., Sopory, S.K., and Kishor, P.K. (2007). Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene, 388(1-2): 1-13. [DOI:10.1016/j.gene.2006.10.009]
35. Teymouri Rad, L., Fayaz Moghaddam, A., Abdollahi Mandoulakani, B. and Wehbi, E. (2022). Expression pattern of genes encoding bZIP56, WRKY1 and NAM-B1 transcription factors under Zn deficiency conditions in bread wheat (Triticum aestivum L.). Journal of Crop Breeding, 14(42): 106-116 (In Persian). [DOI:10.52547/jcb.14.42.106]
36. Wang, M., Kawakami, Y. and Bhullar, N.K. (2019). Molecular analysis of iron deficiency response in hexaploid wheat. Frontiers in Sustainable Food Systems, 3: 67. [DOI:10.3389/fsufs.2019.00067]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadzadeh F, Abdollahi Mandoulakani B. The Effect of Iron Deficiency on the Expression of Genes Encoding Transcription Factors bZIP4, bZIP79, and bZIP97 in Bread Wheat (Triticum aestivum L.). pgr 2024; 11 (1) :1-14
URL: http://pgr.lu.ac.ir/article-1-294-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 1 (2024) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4657