[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 10, Issue 1 (2023) ::
pgr 2023, 10(1): 29-42 Back to browse issues page
Evaluation the Activity of Peroxidase and Catalase Enzymes and the Expression Level of PR1 and PR8 Genes in Apple Fruit following Brown Rot (Monilinia laxa) disease
Fatemeh Derikvand , Eidi Bazgir * , Mostafa Darvishnia , Hossein Mirzaei Najafgholi
Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran , bazgir.ei@lu.ac.ir
Abstract:   (2359 Views)
Apple is one of the most important economic products of Iran and the world. Apple brown rot disease (Monilinia laxa) is one of the important diseases that causes yield loss in pre-harvest and post-harvest stages. In this research, the amount of changes in some defense compounds of apple fruit, including peroxidase and catalase enzymes, following inoculation with M. laxa was assessed. Extraction and measurement of peroxidase and catalase enzymes were done at 0, 3, 6, 9 and 12 days post inoculation with M. laxa. Also, in this study, the changes in the expression of PR1 and PR8 genes in response to brown rot disease in apple fruit was recorded at 12, 24, 48 and 96 hours along with controls. The results of the analysis of variance of resistance genes expression at different time points were significant. After 48 hours, the expression of PR1 and PR8 genes was observed to be the highest compared to the control. The expression of PR1 and PR8 genes was observed to be 3 and 8 times that of the control, respectively. In this research, the expression of PR1 and R8 genes was assessed for the first time following M. laxa inoculation in apples. Results of the present study showed that reseistance genes as well as the antioxidant enzymes can help to improve resistance against apple brown rot disease as an important storage pathogens for long-term storage.
Keywords: PR proteins, Brown rot, Apple, Antioxidant enzyme activity, Reactive oxygen species
Full-Text [PDF 789 kb]   (1006 Downloads)    
Type of Study: Research | Subject: Molecular genetics
References
1. Balal, R.M., Khan, M.M., Shahid, M.A., Mattson, N.S., Abbas, T., Ashfaq, M., Garcia-Sanchez, F., Ghazanfer, U., Gimeno, V. and Iqbal, Z. (2012). Comparative studies on the physiobiochemical, enzymatic, and ionic modifications in salt-tolerant and salt-sensitive citrus rootstocks under NaCl stress. Journal of the American Society for Horticultural Science, 137(2): 86-95. [DOI:10.21273/JASHS.137.2.86]
2. Berni, R., Luyckx, M., Xu, X., Legay, S., Sergeant, K., Hausman, J.F., Lutts, S., Cai, G. and Guerriero, G. (2019). Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 161: 98-106.‌ [DOI:10.1016/j.envexpbot.2018.10.017]
3. Bin-Mohsin, B., Ahmed, N., Adnan, Khan, U. and Tauseef Mohyud-Din, S. (2017). A bioconvection model for a squeezing flow of nanofluid between parallel plates in the presence of gyrotactic microorganisms. The European Physical Journal Plus, 132: 1-12. [DOI:10.1140/epjp/i2017-11454-4]
4. Bonasera, J.M., Kim, J.F., and Beer, S.V. (2006). PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biology, 6(1): 1-12.‌ [DOI:10.1186/1471-2229-6-23]
5. Cao, J.J., Yu, Z.C., Zhang, Y., Li, B.H., Liang, W.X. and Wang, C.X. (2017). Control efficiency of exogenous melatonin against post-harvest apple grey mold and its influence on the activity of defensive enzymes. Journal of Plant Physiology, 53(1753): 1760.‌
6. Cardoso, J.E., Santos, A.A., Rossetti, A.G. and Vidal, J.C. (2004). Relationship between incidence and severity of cashew gummosis in semiarid north‐eastern Brazil. Plant Pathology, 53(3): 363-367.‌ [DOI:10.1111/j.0032-0862.2004.01007.x]
7. Delauney, A.J. and Verma, D.P.S. (1993). Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4(2): 215-223.‌ [DOI:10.1046/j.1365-313X.1993.04020215.x]
8. Dodds, P.N. and Rathjen, J.P. (2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11(8): 539-548.‌ [DOI:10.1038/nrg2812]
9. Dou, D. and Zhou, J.M. (2012). Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host & Microbe, 12(4): 484-495.‌ [DOI:10.1016/j.chom.2012.09.003]
10. Etebarian, H.R., Sholberg, P.L., Eastwell, K.C. and Sayler, R.J. (2005). Biological control of apple blue mold with Pseudomonas fluorescens. Canadian Journal of Microbiology, 51(7): 591-598. [DOI:10.1139/w05-039]
11. FAO. (2018). FAOSTAT download data for apples. Available online at: http://www.fao.org/faostat/en/#data/QC.
12. Grzegorczyk, M., Żarowska, B., Restuccia, C. and Cirvilleri, G. (2017). Postharvest biocontrol ability of killer yeasts against Monilinia fructigena and Monilinia fructicola on stone fruit. Food Microbiology, 61: 93-101.‌ [DOI:10.1016/j.fm.2016.09.005]
13. Hu, M.J., Cox, K.D., Schnabel, G. and Luo, C.X. (2011). Monilinia species causing brown rot of peach in China. PLoS One, 6(9): e24990.‌ [DOI:10.1371/journal.pone.0024990]
14. Hui, Z.M., Wang, Z.Z., Hu, Y., Deng, M.M. and Zhang, Z.W. (2013). Effects of 24-epibrassinolideon the antioxidant system and osmotic adjustment substance in grape seedlings (V. vinifera L.) under chilling stress. Scientia Agricultura Sinica, 46: 1005-1013.‌
15. Jahanbakhsh Godehkahriz, S., Jalali Shahko, F. and Raisi Sadati, S.Y. (2023). Studying the expression pattern of aox2 and pal2 genes associated with the production of antioxidants and flavonoids in yarrow plant following salicylic acid treatment. Plant Genetic Researches, 9(2): 31-40 (In Persian).
16. Lamb, C. and Dixon, R.A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Biology, 48(1): 251-275.‌ [DOI:10.1146/annurev.arplant.48.1.251]
17. Li, Y., Lu, H., Cheng, Q., Li, R., He, S. and Li, B. (2016). Changes of reactive oxygen species and scavenging enzymes of persimmon fruit treated with CO2 deastringency and the effect of hydroxyl radicals on breakdown of cell wall polysaccharides in vitro. Scientia Horticulturae, 199: 81-87.‌ [DOI:10.1016/j.scienta.2015.12.040]
18. Liu, J., Wisniewski, M., Artlip, T., Sui, Y., Droby, S. and Norelli, J. (2013). The potential role of PR-8 gene of apple fruit in the mode of action of the yeast antagonist, Candida oleophila, in postharvest biocontrol of Botrytis cinerea. Postharvest Biology and Technology, 85: 203-209.‌ [DOI:10.1016/j.postharvbio.2013.06.007]
19. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4): 402-408.‌ [DOI:10.1006/meth.2001.1262]
20. Mandal, S., Mallick, N. and Mitra, A. (2009). Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiology and Biochemistry, 47(7): 642-649.‌ [DOI:10.1016/j.plaphy.2009.03.001]
21. Mditshwa, A., Fawole, O.A., Vries, F., van der Merwe, K., Crouch, E. and Opara, U.L. (2017). Impact of dynamic controlled atmospheres on reactive oxygen species, antioxidant capacity and phytochemical properties of apple peel (cv. Granny Smith). Scientia Horticulturae, 216: 169-176.‌ [DOI:10.1016/j.scienta.2017.01.011]
22. Meng, L., Yu, C., Xue, D., Li, B., Liang, W. and Wang, C. (2019). Control efficiency of BHT against postharvest apple grey mold and its influence on the activity of defensive enzymes and content of malondialdehyde. Journal of Plant Protection, 46(3): 686-692.‌
23. Odintsova, T.I., Vassilevski, A.A., Slavokhotova, A.A., Musolyamov, A.K., Finkina, E.I., Khadeeva, N.V., Rogozhin, E.A., Korostyleva, T.V., Pukhalsky, V.A., Grishin, E.V. and Egorov, T.A. (2009). A novel antifungal hevein‐type peptide from Triticum kiharae seeds with a unique 10‐cysteine motif. The FEBS Journal, 276(15): 4266-4275.‌ [DOI:10.1111/j.1742-4658.2009.07135.x]
24. Rafeie, M., Amerian, M.R., Sorkhi, B., Heidari, P. and Asghari, H.R. (2020). Effect of exogenous brassinosteroid application on grain yield, some physiological traits and expression of genes related to this hormone signaling pathway in wheat under drought stress. Plant Genetic Researches, 6(2): 157-172 (In Persian). [DOI:10.29252/pgr.6.2.157]
25. Sels, J., Mathys, J., De Coninck, B.M., Cammue, B.P. and De Bolle, M.F. (2008). Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiology and Biochemistry, 46(11): 941-950.‌ [DOI:10.1016/j.plaphy.2008.06.011]
26. Shetty, N.P., Jørgensen, H.J.L., Jensen, J.D., Collinge, D.B. and Shetty, H.S. (2008). Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 121: 267-280.‌ [DOI:10.1007/s10658-008-9302-5]
27. Sun, T., Li, J., Wang, T., Niu, N. and Xu, J. (2018). Difference in protein expression of apple leaves with different resistance response to Botryosphaeria berengeriana f. sp. piricola infection. Acta Horticulturae Sinica, 45(3): 409-420.‌
28. Tanveer, M. and Shah, A.N. (2017). An insight into salt stress tolerance mechanisms of Chenopodium album. Environmental Science and Pollution Research, 24: 16531-16535.‌ [DOI:10.1007/s11356-017-9337-2]
29. Tian, S., Torres, R., Ballester, A.R., Li, B., Vilanova, L. and González-Candelas, L. (2016). Molecular aspects in pathogen-fruit interactions: Virulence and resistance. Postharvest Biology and Technology, 122: 11-21.‌ [DOI:10.1016/j.postharvbio.2016.04.018]
30. Van Loon, L.C., Rep, M. and Pieterse, C.M. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44: 135-162.‌ [DOI:10.1146/annurev.phyto.44.070505.143425]
31. Wang, C.X., Chen, X.L., and Li, B.H. (2014). Effects of Valsa mali var. mali infection on defense enzymes activity and MDA content in apple callus. Chih Wu Sheng Li Hsueh T'ung Hsun, 50: 909-916.‌
32. Wang, F., Zeng, B., Sun, Z. and Zhu, C. (2009). Relationship between proline and Hg 2+-induced oxidative stress in a tolerant rice mutant. Archives of Environmental Contamination and Toxicology, 56: 723-731.‌ [DOI:10.1007/s00244-008-9226-2]
33. Wang, H., Yang, L., Li, Y., Hou, J., Huang, J. and Liang, W. (2016). Involvement of ABA-and H2O2-dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress. Plant Physiology and Biochemistry, 107: 126-136.‌ [DOI:10.1016/j.plaphy.2016.05.040]
34. Wang, X.D., Bi, W.S., Jing, G.A.O., Yu, X.M., Wang, H.Y. and Liu, D.Q. (2018). Systemic acquired resistance, NPR1, and pathogenesis-related genes in wheat and barley. Journal of Integrative Agriculture, 17(11): 2468-2477.‌ [DOI:10.1016/S2095-3119(17)61852-5]
35. Wang, Y.F., Pan, F.B., Zhan, X., Wang, G.S., Zhang, G.D., Hu, Y.L., Chen, X.S. and Mao, Z.Q. (2015). Effects of five kinds of phenolic acid on the function of mitochondria and antioxidant systems in roots of Malus hupehensis Rehd. seedlings. Acta Ecologica Sinica, 35: 6566-6573.‌
36. Xing, J.H., Pan, D.Z., Tan, F.L. and Chen, W. (2017). Effects of NaCl stress on the osmotic substance contents in Kandelia candel roots Ecol. Environmental Science, 26(1865): 1871.‌
37. Yang, Y., Lu, X., Jin, J. and Bai, R. (2017). Effects of CaCl2 on the AsA-GSH cycle of sour jujube seedlings under NaCl stress. Acta Horticulturae Sinica, 44(5): 953-962.‌
38. Yim, B., Smalla, K. and Winkelmann, T. (2013). Evaluation of apple replant problems based on different soil disinfection treatments-links to soil microbial community structure?. Plant and Soil, 366: 617-631.‌ [DOI:10.1007/s11104-012-1454-6]
39. Zhang, L., Liu, J., Wang, X. and Bi, Y. (2013). Glucose-6-phosphate dehydrogenase acts as a regulator of cell redox balance in rice suspension cells under salt stress. Plant Growth Regulation, 69: 139-148.‌ [DOI:10.1007/s10725-012-9757-4]
40. Zhang, Y., Shi, X., Li, B., Zhang, Q., Liang, W. and Wang, C. (2016). Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple. Plant Physiology and Biochemistry, 106: 64-72.‌ [DOI:10.1016/j.plaphy.2016.04.047]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Derikvand F, Bazgir E, Darvishnia M, Mirzaei Najafgholi H. Evaluation the Activity of Peroxidase and Catalase Enzymes and the Expression Level of PR1 and PR8 Genes in Apple Fruit following Brown Rot (Monilinia laxa) disease. pgr 2023; 10 (1) :29-42
URL: http://pgr.lu.ac.ir/article-1-287-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 1 (2023) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 38 queries by YEKTAWEB 4657