[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 9, Issue 2 (2023) ::
pgr 2023, 9(2): 15-30 Back to browse issues page
The effect of Salt Stress on some Morpho-Physiological and Molecular Traits of Transgenic Tomato Plants of T3 Containing cry1Ab Gene
Khadijeh Abbaszadeh , Reza Shirzadian-Khorramabad * , Mohammad Mahdi Sohani , Zahra Hajiahmadi
Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran , r.shirzadian@guilan.ac.ir
Abstract:   (4480 Views)
Salinity stress affects morpho-physiological and biochemical traits of plants. The transgenic Bt plants play a significant role in pest control, but their response and ability to cope with environmental stresses still need to be evaluated. Therefore, effect of salinity stress at 0, 50, 100, 150, and 200 mM on morphological, physiological, and molecular traits of T3 transgenic tomato plants containing cry1Ab gene (CH-Falat-Bt) was investigated and compared with that of the non-transgenic control (CH-Falat). Evaluation of the morphological traits (leaf area, root length, fresh and dry weight of roots) at different salinity levels revealed that CH-Falat-Bt transgenic plants are more tolerant to salinity stress compared to CH-Falat non-transgenic plants. The chlorophyll content at 150 and 200 mM salinity levels was 12 and 9% plants, respectively. Moreover, the amount of RWC, carotenoids, proline and soluble sugars increased significantly in transgenic plants as salinity levels increased. The relative expression of SOS1 and SOS2 genes showed a significant increase in all salinity levels in CH-Falat-Bt transgenic plants compared to CH-Falat non-transgenic plants. The amount of electrolyte leakage in the transgenic plants was significantly reduced compared to the non-transgenic plants. The results of morphological, physiological, and molecular investigations of CH-Falat-Bt transgenic plants confirmed that the undesirable effects of salinity stress on transgenic plants is much less than non-transgenic ones. in general CH-Falat-Bt transgenic plants are more tolerant to different applied salinity levels than the wild variety.
Keywords: Salt stress, Tomato, Bt, Cry1Ab, SOS1, SOS2
Full-Text [PDF 612 kb]   (1530 Downloads)    
Type of Study: Research | Subject: Molecular genetics
References
1. Abdeldym, E.A., El-Mogy, M.M., Abdellateaf, H.R. and Atia, M.A. (2020). Genetic characterization, agro-morphological and physiological evaluation of grafted tomato under salinity stress conditions. Agronomy, 10(1948): 1-26. [DOI:10.3390/agronomy10121948]
2. Ahmadi, M. and Souri, M.K. (2018). Growth and mineral content of coriander (Coriandrum sativum L.) plants under mild salinity with different salts. Acta Physiologiae Plantarum, 40: 1-8. [DOI:10.1007/s11738-018-2773-x]
3. Anjum, S., Wang, L., Farooq, M., Hussain, M., Xue, L. and Zou, C. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197: 177-185. [DOI:10.1111/j.1439-037X.2010.00459.x]
4. Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199: 361-376. [DOI:10.1078/0367-2530-00165]
5. Askari, H., Edqvist, J., Hajheidari, M., Kafi, M. and Salekdeh, G.H. (2006). Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics, 6: 2542-2554. [DOI:10.1002/pmic.200500328] [PMID]
6. Bates, L.S., Waldren, R.P. and Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207. [DOI:10.1007/BF00018060]
7. Ben Hamed, K., Castagna, A., Salem, E., Ranieri, A. and Abdelly, C. (2007). Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation, 53: 185-194. [DOI:10.1007/s10725-007-9217-8]
8. Bergougnoux, V. (2014). The history of tomato: from domestication to biopharming. Biotechnology Advances, 32: 170-189. [DOI:10.1016/j.biotechadv.2013.11.003] [PMID]
9. Botella, M.Á., Hernández, V., Mestre, T., Hellín, P., García-Legaz, M.F., Rivero, R.M., Martínez, V., Fenoll, J. and Flores, P. (2021) Bioactive Compounds of tomato fruit in response to salinity, heat and their combination. Agriculture, 6: 534-545. [DOI:10.3390/agriculture11060534]
10. Chanratana, M., Joe, M.M., Roy Choudhury, A., Anandham, R., Krishnamoorthy, R., Kim, K., Jeon, S., Choi, J., Choi, J. and Sa, T. (2019). Physiological response of tomato plant to chitosan-immobilized aggregated Methylobacterium oryzae CBMB20 inoculation under salinity stress. 3 Biotech, 9: 1-13. [DOI:10.1007/s13205-019-1923-1] [PMID] [PMCID]
11. Dellaporta, S.L., Wood, J. and Hicks, J.B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1: 19-21. [DOI:10.1007/BF02712670]
12. Doganlar, Z.B., Demir, K., Basak, H. and Gul, I. (2010). Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. African Journal of Agricultural Research, 15: 2056-2065.
13. Gholami, A.A. (2018). Manipulating the pathway for the synthesis of carotenoids to improve the quality of food products through biotechnology. Journal of Biosafety, 10: 1-15.
14. Girón-Calva, P.S., Twyman, R.M., Albajes, R., Gatehouse, A.M. and Christou, P. (2020). The impact of environmental stress on Bt crop performance. Trends in Plant Science, 25: 264-278. [DOI:10.1016/j.tplants.2019.12.019] [PMID]
15. Guo, M., Wang, X.S., Guo, H.D., Bai, S.Y., Khan, A., Wang, X.M., Gao, Y.M. and Li, J.S. (2022). Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. Frontiers in Plant Science, 13: 949-954. [DOI:10.3389/fpls.2022.949541] [PMID] [PMCID]
16. Hajiahmadi, Z., Shirzadian-Khorramabad, R., Kazemzad, M. and Sohani, M.M. (2020). A novel, simple, and stable mesoporous silica nanoparticle-based gene transformation approach in Solanum lycopersicum. 3 Biotech, 10: 1-13. [DOI:10.1007/s13205-020-02359-2] [PMID] [PMCID]
17. Hand, M.J., Taffouo, V.D., Nouck, A.E., Nyemene, K.P.J., Tonfack, B., Meguekam, T.L. and Youmbi, E. (2017). effects of salt stress on plant growth, nutrient partitioning, chlorophyll content, leaf relative water content, accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45: 481-490. [DOI:10.15835/nbha45210928]
18. Hayford, M.B., Medford, J.I., Hoffman, N.L., Rogers, S.G. and Klee, H.J. (1988). Development of a plant transformation selection system based on expression of genes encoding gentamicin acetyltransferases. Plant Physiology, 86: 1216-1222. [DOI:10.1104/pp.86.4.1216] [PMID] [PMCID]
19. Iqbal, M., Akhtar, N., Zafar, S. and Ali, I. (2008). Genotypic responses for yield and seed oil quality of two Brassica species under semi-arid environmental conditions. South African Journal of Botany, 74: 567-571. [DOI:10.1016/j.sajb.2008.02.003]
20. Irigoyen, J., Einerich, D. and Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiologia Plantarum, 84: 55-60. [DOI:10.1111/j.1399-3054.1992.tb08764.x]
21. Kaya, M.D., Okçu, G., Atak, M., Cıkılı, Y. and Kolsarıcı, Ö. (2006). Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24: 291-295. [DOI:10.1016/j.eja.2005.08.001]
22. Khan, A., Khan, A.L., Muneer, S., Kim, Y.-H., Al-Rawahi, A. and Al-Harrasi, A. (2019). Silicon and salinity: crosstalk in crop-mediated stress tolerance mechanisms. Frontiers in Plant Science, 10: 1429. [DOI:10.1007/s12633-018-9839-7]
23. Lee, B.H. and Zhu, J.K. (2010). Phenotypic analysis of Arabidopsis mutants: electrolyte leakage after freezing stress. Cold Spring Harbor Protocols, 1: 970-972. [DOI:10.1101/pdb.prot4970] [PMID]
24. Lichtenthaler, H.K. and Buschmann, C. (2001). Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry, 1: F4. 2.1-F4. 2.6. [DOI:10.1002/0471142913.faf0402s01]
25. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25: 402-408. [DOI:10.1006/meth.2001.1262] [PMID]
26. Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Ibeas, J.I., Damsz, B., Narasimhan, M.L., Hasegawa, P.M., Joly, R.J. and Bressan, R.A. (2002). Does proline accumulation play an active role in stress‐induced growth reduction? The Plant Journal, 31: 699-712. [DOI:10.1046/j.1365-313X.2002.01389.x] [PMID]
27. Naz, A.A., Arifuzzaman, M., Muzammil, S., Pillen, K. and Léon, J. (2014). Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genetics, 15: 1-12. [DOI:10.1186/s12863-014-0107-6] [PMID] [PMCID]
28. Nazari Khakshoor, E., Azadi, A., Fourozesh, P., Etminan, A. and Majidi Hervan, E. (2022). Prioritization and Identification of Candidate Genes Associated with Root Traits Under Salinity Stress in Bread Wheat (Triticum aestivum L.). Plant Genetic Researches, 9(1): 71-84 (In Persian). [DOI:10.52547/pgr.9.1.6]
29. Peng, Q., Yu, Q. and Song, F. (2019). Expression ofcrygenes inBacillus thuringiensisbiotechnology. Applied Microbiology and Biotechnology, 103: 1617-1626. [DOI:10.1007/s00253-018-9552-x] [PMID]
30. Raiola, A., Rigano, M.M., Calafiore, R., Frusciante, L. and Barone, A. (2014). Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators of Inflammation, 2014: 1-16. [DOI:10.1155/2014/139873] [PMID] [PMCID]
31. Saeidi-Sar, S., Abbaspour, H., Afshari, H. and Yaghoobi, S.R. (2013). Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiologiae Plantarum, 35: 667-677. [DOI:10.1007/s11738-012-1107-7]
32. Sairam, R.K., Rao, K.V. and Srivastava, G. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163: 1037-1046. [DOI:10.1016/S0168-9452(02)00278-9]
33. Salami, R., Mohammadi, S.A., Ghafarian, S. and Moghaddam, M. (2016). Expression analysis of Hv TIP2; 3 and Hv TIP4; 1 in sensitive and tolerant barley genotypes under salinity stress. Plant Genetic Researches, 2(2): 1-14 (In Persian). [DOI:10.29252/pgr.2.2.1]
34. Samal, K.C. and Rout, G.R. (2018). Genetic improvement of vegetables using transgenic technology. In: Rout, G.R. and Peter K.V., Eds., Genetic Engineering of Horticultural Crops, pp. 193-224, Academic Press, Cambridge, UK. [DOI:10.1016/B978-0-12-810439-2.00010-6]
35. Shahzad, B., Shabala, L., Zhou, M., Venkataraman, G., Solis, C.A., Page, D., Chen, Z.H. and Shabala, S. (2022). Comparing essentiality of sos1-mediated Na(+) exclusion in salinity tolerance between cultivated and wild rice species. International Journal of Molecular Sciences, 23: 1-12. [DOI:10.3390/ijms23179900] [PMID] [PMCID]
36. Shi, H., Lee, B.H., Wu, S.J. and Zhu, J.K. (2003). Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 21: 81-85. [DOI:10.1038/nbt766] [PMID]
37. Souri, M.K. and Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 6: 26. [DOI:10.1186/s40538-019-0169-9]
38. Türkan, I., Bor, M., Özdemir, F. and Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168: 223-231. [DOI:10.1016/j.plantsci.2004.07.032]
39. Xie, Q., Zhou, Y. and Jiang, X. (2022). Structure, Function, and Regulation of the Plasma Membrane Na+/H+ Antiporter Salt Overly Sensitive 1 in Plants. Frontiers in Plant Science, 13: 1-13. [DOI:10.3389/fpls.2022.866265] [PMID] [PMCID]
40. Yue, L., Zhuang, Y., Gu, Y., Li, H., Tu, S., Yang, X. and Huang, W. (2021). Heterologous expression of Solanum tuberosum NAC1 gene confers enhanced tolerance to salt stress in transgenic Nicotiana benthamiana. Journal of Plant Biology, 64: 531-542. [DOI:10.1007/s12374-021-09327-0]
41. Zhu, J.K. (2016). Abiotic stress signaling and responses in plants. Cell, 167: 313-324. [DOI:10.1016/j.cell.2016.08.029] [PMID] [PMCID]
42. Ziaf, K., Amjad, M., Pervez, M.A., Iqbal, Q., Rajwana, I.A. and Ayyub, M. (2009). Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). Pakistan Journal of Botany, 41: 1797-1809.
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abbaszadeh K, Shirzadian-Khorramabad R, Sohani M M, Hajiahmadi Z. The effect of Salt Stress on some Morpho-Physiological and Molecular Traits of Transgenic Tomato Plants of T3 Containing cry1Ab Gene. pgr 2023; 9 (2) :15-30
URL: http://pgr.lu.ac.ir/article-1-279-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 2 (2023) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 38 queries by YEKTAWEB 4657