[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 8, Issue 2 (2022) ::
pgr 2022, 8(2): 45-56 Back to browse issues page
Investigation of Intera- and Interspecies Variation of Festuca Using Seed Protein Electrophoresis
Soheila Afkar * , Faranak Hadi , Ali Ashraf Jafari
Agriculture Department, Payame Noor University, Tehran, Iran , s.afkar@pnu.ac.ir
Abstract:   (6462 Views)
Festuca is one of the largest genera of the grass family, which has more than 600 species with different ploidy levels. The aim of this study was to estimate the genetic diversity within 22 populations of three species of Festuca (Festuca arundinacea, F.rubra and F.ovina) using a seed storage protein electrophoresis pattern. These species showed a significant variation in the number of protein bands from 5-13. The highest number of bands was found in G17 (F.rubra) and the lowest number of protein bands was in G5 (F.ovina). Band number 14 was only observed in G3. It is suggested that this band can be considered as a specific band for the identification of this genotype. According to the results of AMOVA analysis, there is a high level of genetic diversity within the species rather than between species that can be due to the out-crossing nature of this genus. According to observed differences for variation parameters among the three studied species, it is concluded that they have dissimilar genetic structures. The results of cluster analysis based on seed storage protein profiles in evaluated genotypes using Euclidean distance matrix and UPGMA method showed four groups. The lowest similarity coefficient was between G14 and G15 (F.arundinacea) with G6 (F.ovina). Hence, it is suggested that they evolved from a different evolutionary process and it is suggested to use them as the parents of new synthetic varieties. The observed diversity in the seed protein pattern in the three species of Festuca, can be explained by allogamy-induced-heterozygosity, species difference or population collection from various regions.
Keywords: Cluster analysis, Festuca species, Genetic variation, Protein marker, SDS-PAGE
Full-Text [PDF 1355 kb]   (1267 Downloads)    
Type of Study: Research | Subject: Molecular genetics
References
1. Afkar, S., Karimzadeh, Gh. and Jafari, A.A. (2010). Genetic variation in Tall Fescue (Festuca arundinacea) populations based on seed storage protein polymorphism. Journal of New Seeds, 11: 390-398. [DOI:10.1080/1522886X.2010.525733]
2. Azeez, M.A., Aremu, C.O. and Olaniyan, O.O. (2013). Assessment of genetic variation in accessions of Sesame (Sesamum indicum) and its crosses by seed protein electrophoresis. Journal of Agroalimentary Processes and Technologies, 19(4): 383-391.
3. Bonato, A.V., CalvoII, E.S., Geraldi, I.O. and Arias, A.A. (2006). Genetic similarity among soybean (Glycine max L.) cultivars released in Brazil using AFLP markers. Genetics and Molecular Biology, 29: 692-704. [DOI:10.1590/S1415-47572006000400019]
4. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytic Biochemistry, 72(1-2): 248-254. [DOI:10.1016/0003-2697(76)90527-3]
5. Bughrara, S.S., Sleper, D.A. and Krause, G.F. (1991). Genetics variation in tall fescue digestibility estimated using a prepared cellulose solution. Crop Science, 31: 883-889. [DOI:10.2135/cropsci1991.0011183X003100040008x]
6. Cheng, Y., Zhou, K., Humphreys, M.W., Harper, J.A., Ma, X., Zhang, X.,Yan, H. and Huang, L. (2016). Phylogenetic relationships in the Festuca-Lolium complex (Loliinae; Poaceae): new insights from chloroplast sequences. Frontiers in Ecology and Evolution, 4: 1-12. [DOI:10.3389/fevo.2016.00089]
7. Crawford, D.J. (1990). Plant Molecular Systematics. John Wiley and Sons, New York, USA.
8. Fu, K., Zhihui, G., Xinquan, Z., Yan, F., Wendan, W., Daxu, L., Yan, P., Linkai, H., Ming, S., Shiqie, B. and Xiao, M. (2016). Insight into the genetic variability analysis and cultivar identification of tall fescue by using SSR markers. Hereditas, 153: 9-20. [DOI:10.1186/s41065-016-0013-1]
9. Gaut, B.S., Tredway, L.P., Kubik, C., Gaut, R.L. and Meyer, W. (2000). Phylogenetic relationships and genetics diversity among members of the Festuca-Lollium complex (Poacea) based on ITS sequence data. Plant Systematics and Evolution, 224: 33-53. [DOI:10.1007/BF00985265]
10. Gepts, P. (1989). Genetic Diversity of Seed Storage Proteins in Plants. In: Brown, A.H.D., Clegg, M.T., Kahler, A.L. and Weir, B.S., Eds., Plant Population Genetics, Breeding and Genetic Resources. pp. 215-241. Sinauer Associates Inc. Sunderland, Massachusett, USA.
11. Gholami Farahabadi, M., Ranjbar, G.A., Dehestani-Kalagar, A. and Bagheri, N. (2021). Investigation of qualitative traits and genes expression involved in bakery quality for some of the bread's wheat doubled haploid lines. Plant Genetic Researches, 8(1): 151-168 (In Persian). [DOI:10.52547/pgr.8.1.10]
12. Gilliland, T.J., Coll, R., Calsyn, E., De Loose, M., van Eijk, M.J.T. and Roldán-Ruiz, I. (2000). Estimating genetic conformity between related ryegrass (Lolium) varieties, morphology and biochemical characterization. Molecular Breeding, 6: 569-580. [DOI:10.1023/A:1011361731545]
13. Guy, C.L., Haskell, D., Neven, L., Kelin, P. and Smelser, C. (1992). Hydration state responsive proteins link and drought stress in spinach. Planta, 88: 265-270. [DOI:10.1007/BF00216823]
14. Inda, L.A., Segarra-Moragues, J.G., Müller, J., Peterson, P.M. and Catalán, P. (2008). Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Molecular Phylogenetics and Evolution, 46: 932-957. [DOI:10.1016/j.ympev.2007.11.022]
15. Iqbal, S.H., Ghafoor, A. and Ayub, N. (2005). Relationship between SDS-PAGE markers and Ascochyta blight in chickpea. Pakistan Journal of Botany, 37: 87-96.
16. Kakaei, M. and Kahrizi, D. (2011). Study of seed proteins pattern of Brassica napus varieties via sodium dodecyl sulfate polyacrylamide gel electrophoresis. International Research Journal of Biotechnology, 2: 26-28.
17. Kancherla L.S. and Bhalla, P.M. (2003). Phenotypic variations in micropropagated Australian ornamental climber Pandorea pandorana. Acta Horticulture, 616: 463-466. [DOI:10.17660/ActaHortic.2003.616.72]
18. Kauppinen, M., Saikkonen, K., Helander, M., Pirttilä, A.M. and Wäli, P.R. (2016). Epichloë grass endophytes in sustainable agriculture. Nature Plants, 2: 1-7. [DOI:10.1038/nplants.2015.224]
19. Loureiro, J., Kopecký, D., Castro, S., Santos, C. and Silveira, P. (2007). Flow cytometric and cytogenetic analyses of Iberian Peninsula Festuca spp. Plant Systematics and Evolution, 269: 89-105. [DOI:10.1007/s00606-007-0564-8]
20. Mahmoud, A.A., Natarajan, S.S., Bennett, J.O., Mawhinney, T.P., Wiebold, W.J. and Krishnan, H.B. (2006). Effect of six decades of selective breeding on soybean protein composition and quality: A biochemical and molecular analysis. Journal of Agricultural and Food Chemistry, 54: 3916-3922. [DOI:10.1021/jf060391m]
21. Masoumi, P., Amini, F. and Ramshini, H. (2020). Genetic variation of seed related traits in Festuca arundinacea using multivariate statistical methods. Plant Genetic Researches, 6(2): 55-68 (In Persian). [DOI:10.29252/pgr.6.2.55]
22. Mirzaei Nadoushan, H., Shariat, A. and Asadi Corom, F. (2002). Evaluation of existing genetic variation in different populations of Haloxylon Spp. Using electrophoresis technique. Iranina Journal of Rangelands and Forests Plant Breeding and Genetic Research, 7(1): 99-117 (In Persian).
23. Movahed, B., Jafari, A.A. and Moradi, P. (2013). Investigation on variation and relationships among seed yield and its components in sheep fscue (Festuca ovina) under irrigation and dryland farming conditions, Zanjan, Iran. Iranian Journal of Range and Desert Research, 20(2): 309-319 (In Persian).
24. Nejadhabibvash, F., Hasanzadeh Gorttapeh, A. and Tofigh, S. (2014). Genetic variation of some Iranian Hyoscyamus landraces based on seed storage protein. Etho-Pharmaceutical Products, 1(2): 14-22.
25. Parashar, N., Jakhar, L.K., Krishna, R. and Jangid, K. (2015). Genetic diversity for storage seed protein profile in mustard (Brassica Juncea) genotypes. An International Quarterly Journal of Environmental Sciences, 8: 177-182.
26. Peters, P.J. and Martinelli, A.J. (1989). Hierarchical cluster analysis as a tool manages variation in germplasm collections. Theoretical and Applied Genetics, 78: 42-48. [DOI:10.1007/BF00299751]
27. Rahman, M.M. and Hirata, Y. (2004). Genetic diversity in Brassica species using SDS-PAGE analysis. Journal of Biological Sciences, 4: 234-238. [DOI:10.3923/jbs.2004.234.238]
28. Reed, K.F.M., Clement, S.L., Feely, W.F. and Clark, B. (2004). Improving tall fescue (Festuca arundinacea) for cool-season vigour. Australian Journal of Experiental Agriculture, 44: 873-881. [DOI:10.1071/EA03173]
29. Salehi Shanjani, P., Jafari, A.A. and Jahanbaz, R. (2015). Investigation of genetic variations among crested Wheatgrass species based of agronoical traits and total leafprotein. Journal of Rangeland Science, 5(3): 165-180 (In Persian).
30. Salisbury, F.B. and Ross, C.W. (1991). Plant Physiology. Wadsworth Publishing Company, Baverly Belmont, California, USA.
31. Sharma, D.B. and Krishna, K.R. (2017). Genetic diversity in cowpea (Vigna unguiculata) accessions using protein profiling. International Journal of Pure and Applied Biosciences, 5(2): 491-496. [DOI:10.18782/2320-7051.2768]
32. Sinha, K.N., Singh, M. and Kumar, C. (2012). Electrophoretic study of seed storage protein in five species of Bauhinia. Journal of Pharmceutical and Biological Sciences, 4(2): 8-11. [DOI:10.9790/3008-0420811]
33. Soreng, R.J., Peterson, P.M., Romaschenko, K., Davidse, G., Zuloaga, F.O., Judziewicz, E.J., Filgueiras, T.S., Davis, J.I. and Morrone, O. (2015). A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution, 53: 117-137. [DOI:10.1111/jse.12150]
34. Stoyanova, S. and Boller, B. (2010). Seed protein electrophoresis for assessment of genetic variation within genotype of Meadow Fescue (Festuca pratensis). Czech Journal of Genetics and Plant Breeding, 46: 576-581. [DOI:10.17221/2569-CJGPB]
35. Tzveler, N.N. (1989). The system of grasses (Poaceae) and their evolution. Botanical Review, 55: 141-204. [DOI:10.1007/BF02858328]
36. Wang, Z., Hopkins, A. and Main, R. (2001) Forage and turfgrass biotechnology. Critical Reviews in Plant Science, 20: 573-619. [DOI:10.1080/20013591099281]
37. Weibull, P., Ghatnekar, L. and Bengtsson, O. (1991). Genetic variation in commercial varieties and natural populations of sheep Fescue(Festuca ovina). Plant Breeding, 107: 203-209. [DOI:10.1111/j.1439-0523.1991.tb01207.x]
38. Yousofi, M., Esmaeili, M. and Otroshy, M. (2013). Genetic variation natural populations of Agropyron cristaum based on SDS-PAGE of seed proteins. The Iranianian Journal of Botany, 19(2): 186-193 (In Persian).
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Afkar S, Hadi F, Jafari A A. Investigation of Intera- and Interspecies Variation of Festuca Using Seed Protein Electrophoresis. pgr 2022; 8 (2) :45-56
URL: http://pgr.lu.ac.ir/article-1-228-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (2022) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4657