1. Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D. and Sorrells, M.E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36: 181-186. [ DOI:10.1139/g93-024] 2. Anonymous. (2018). Word wheat Production-North Dakota Wheat Commission. Access in: www.ndwheat.com/uploads/resources/546/world-web-charts.pdf 3. Collard, B.C.Y. and Mackill, D. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363: 557-572. [ DOI:10.1098/rstb.2007.2170] 4. De Ponti, O. (2010). Germplasm Exploitation and Ownership: Who owns what? 2nd International Symposium on Genomics of Plant Genetic Resources, Bologna, Italy. 5. Doyle, J.J. and Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11-15. 6. Earl, D.A. and Holdt, B.M. (2012). Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetic Resource, 4: 359-361. [ DOI:10.1007/s12686-011-9548-7] 7. Eghlima, G., Kheiry, A., Sanikhani, M., Hadian, J. and Aelaei, M. (2021). Study of genetic diversity of glycyrrizha glabra L. populations using ISSR molecular markers. Plant Genetic Researches, 8(1): 81-94 (In Persian). [ DOI:10.52547/pgr.8.1.6] 8. Etminan, A., Pour-Aboughadareh, A., Mohammadi, R., Ahmadi-Rad, A.A., Moradi, Z. and Noori, A. (2017). Evaluation of genetic diversity in a mini core collection of Iranian durum wheat germplasms. Journal of Animal and Plant Science, 19: 943-956. 9. Etminan, A., Pour-Aboughadareh, A., Mohammadi, R., Ahmadi-Rad, A., Noori, A., Mahdavian, Z. and Moradi, Z. (2016). Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnology and Biotechnology Equipment, 30: 1075-1081. [ DOI:10.1080/13102818.2016.1228478] 10. Fbriani, G. and Lintas, C. (1988). Durum wheat: Chemistry and Technology. American Association Cereal Chemist, Saint Paul, Minnesota, USA. 11. Garrido-Cardenas, J.A., Mesa-Valle, C. and Manzano-Agugliaro, F. (2018). Trends in plant research using molecular markers. Planta, 247(3): 543-557. [ DOI:10.1007/s00425-017-2829-y] 12. Liu, B. and Wendel, J. (2001). Inter simple sequence repeat (ISSR) polymorphisms as a genetic marker system in cotton. Molecular Ecology Notes, 1: 205-208. [ DOI:10.1046/j.1471-8278.2001.00073.x] 13. Mardi, M., Naghavi, M.R., Pirseyedi, S.M., Kazemi Alamooti, M., Rashidi Monfared, S., Ahkami, A.H., Omidbakhsh, M.A., Alavi, N.S., Salehi Shanjani, P. and Katsiotis, A. (2011). Comparative assessment of SSAP, AFLP and SSR markers for evaluation of genetic diversity of durum wheat (Triticum turgidum L. var. durum). Journal of Agricultural Science and Technology, 13: 905-920. 14. Maxted, N., Ford-Lloyd, B.V., Jury, S.L., Kell, S.P. and Scholten, M.A. (2006). Towards a definition of a crop wild relative. Biodiversity and Conservation, 15: 2673-2685. [ DOI:10.1007/s10531-005-5409-6] 15. Peakall, R. and Smouse, P.E. (2006). GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288-295. [ DOI:10.1111/j.1471-8286.2005.01155.x] 16. Pour-Aboughadareh, A., Ahmadi, J., Mehrabi, A.A., Etminan, A. and Moghaddam, M. (2018). Insight into the genetic variability analysis and relationships among some Aegilops and Triticum species, as genome progenitors of bread wheat, using SCoT markers. Plant Biosystem, 152(4): 694-703. [ DOI:10.1080/11263504.2017.1320311] 17. Pour-Aboughadareh, A., Mahmoudi, M., Moghaddam, M., Ahmadi, J., Mehrabi, A.A. and Alavikia, S.S. (2017). Agro-morphological and molecular variability in Triticum boeoticum accessions from Zagros Mountains, Iran. Genetics Resource and Crop Evolution, 64: 545-556. [ DOI:10.1007/s10722-016-0381-4] 18. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2: 225-238. [ DOI:10.1007/BF00564200] 19. Prevost, A. and Wilkinson, M.J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98: 107-112. [ DOI:10.1007/s001220051046] 20. Rashidimonfared, S., Hosseinzadeh, A., Mardi, M., Naghavi, M. and Pirseyedi, S. (2008). Evaluation of diversity in durum wheat using retrotransposon markers SSAP (Sequence-Specific Amplification Polymorphism). Water and Soil Science, 12(45): 147-155. 21. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology Evolution, 28: 2731-2739. [ DOI:10.1093/molbev/msr121] 22. Varshney, R.K., Chabane, K., Hendre, P.S., Ramesh, K., Aggarwal, K. and Graner, A. (2007). Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science, 173: 638-649. [ DOI:10.1016/j.plantsci.2007.08.010] 23. Weide, A., Rieh, S., Zeidi, M. and Conard, N.J. (2013). Using new morphological criteria to identify domesticated emmer wheat at the aceramic neolithic site of Chogha Golan (Iran). Journal of Archaeological Science, 57: 109-118. [ DOI:10.1016/j.jas.2015.01.013] 24. Zietkiewicz, E., Rafalski, A. and Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics, 20: 176-183. [ DOI:10.1006/geno.1994.1151]
|