[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 5, Issue 2 (2019) ::
pgr 2019, 5(2): 29-40 Back to browse issues page
Diversity of Resistance Gene Analogues in Rust Resistance and Susceptible Bread Wheat Varieties
Faranak Khanmakoo , Seyed Abolghasem Mohammadi * , Robab Salami , Saeed Aharizad
Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tabriz University, Tabriz, Iran , mohammadi@tabrizu.ac.ir
Abstract:   (15058 Views)
Fungal diseases, especially leaf and stripe rusts are wheat yield reducing factors in Iran and the world. In this study, genetic diversity of 20 wheat varieties with different response to leaf and stripe rusts were studied using primers designed based on the conserved regions of plant disease resistance genes. The banding patterns of polymorphic markers were scored as dominant and number of amplified bands and percentage of polymorphism were determined. In addition, for each primer combination, polymorphic information content (PIC) and marker index (MI) were calculated. Out of the 11 used single primers and primer combinations, five primer combinations and a single primer produced scorable amplification. The maximum and minimum of PIC were observed for LLOOP-1 and H2016-H2020 primer combination with mean value of 0.50 and 0.28, respectively. The primer combinations of H2016-H1146 and H2016-H2020 with mean values of 4.80 and of 2.84, had minimum and maximum of MI, respectively. Cluster analysis based on Neighbor-Joining algorithm and evolutionary P-distance coefficient assigned the varieties into four groups which were in agreement with their response to yellow rust. In principal coordinate analysis, the scatter plot of varieties based on two first coordinates confirmed the groups obtained from cluster analysis.
Keywords: Resistance gene analogues, Genetic diversity, Yellow rust, Leaf rust
Full-Text [PDF 1180 kb]   (2035 Downloads)    
Type of Study: Research | Subject: Plant genetics
References
1. Ameline-Torregrosa, C., Wang, B.B., O'Bleness, M.S., Deshpande, S., Zhu, H., Roe, B., Young, N.D. and Cannon, S.B. (2008). Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiolgy, 146: 5-21. [DOI:10.1104/pp.107.104588]
2. Arya, P., Kumar, G., Acharya, V. and Singh, A.K. (2014). Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae. PLoS ONE, 9: e107987. [DOI:10.1371/journal.pone.0107987]
3. Bouktila, D., Khalfallah, Y., Habachi-Houimli, Y., Mezghani-Khemakhem, M., Makni, M. and Makni, H. (2014). Large-scale analysis of NBS domain-encoding resistance gene analogs in Triticeae. Genetics and Molecular Biology, 37: 598-610. [DOI:10.1590/S1415-47572014000400017]
4. Chen, X.M. (2005). Epidemiology and control of stripe rust (Puccinia striiformisf. sp. tritici) on wheat. Canadian. Journal of Plant Pathology, 27: 314-337. [DOI:10.1080/07060660509507230]
5. Chen, J.Y., Huang, J.Q., Li, N.Y., Ma, X.F., Wang, J.L., Liu, C., Liu, Y.F., Liang, Y., Bao, Y.M. and Dai, X.F. (2015). Genome-wide analysis of the gene families of resistance gene analogues in cotton and their response to Verticillium wilt. BMC Plant Biology, 148: 1-15. [DOI:10.1186/s12870-015-0508-3]
6. Chen, X.M., Line, R.F. and Leung, H. (1998). Genome scanning for resistance gene analogue in rice, barley and wheat by high solution electrophoresis. Theoretical and Applied Genetics, 97: 345-355. [DOI:10.1007/s001220050905]
7. Cheng, X., Jiang, H., Zhao, Y., Qian, Y., Zhu, S. and Cheng, B. (2010). A genomic analysis of disease-resistance genes encoding nucleotide binding sites in Sorghum bicolor. Genetics and Molecular Biology, 33: 292-297. [DOI:10.1590/S1415-47572010005000036]
8. Cheng, Y., Li, X., Jiang, H., Ma, W., Miao, W., Yamada, T. and Zhang, M. (2012). Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize. The FEBS Journal, 279: 2431-2443. [DOI:10.1111/j.1742-4658.2012.08621.x]
9. Cheng, J.P., Yan, J. and Dahan, A. (2003). Disease resistance gene analog polymorphism of wild emmer wheat population, Tenth International Wheat Genetics Symposium. Italy 1-6 September 2003.
10. Cloutier, S., Mccallum, B.D., Loutre, C., Banks, T.W., Wicker, T., Feuillet, C., Keller, B. and Jordan, M.C. (2007). Leaf rust resistance gene Lr1 isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Molecular Biology, 65: 93-106. [DOI:10.1007/s11103-007-9201-8]
11. FAO. (2017). FAO STAT. www.faostat.Fao.org.
12. Fritz-Laylin, L.K., Krishnamurthy, N., Tor, M., Sjolander, K.V. and Jones, J.D. (2005). Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiology, 138: 611-623. [DOI:10.1104/pp.104.054452]
13. Gill, B.S., Appels, R., Botha-Oberholster, A.M., Buell, C.R., Bennetzen, J.L., Chalhoub, B., Chumley, F., Dvorak, J., Iwanaga, M., Keller, B., Li, W., Mccombie, W.R., Ogihara, Y., Quetier, F. and Sasaki, T. (2004). A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics, 104: 034769. [DOI:10.1534/genetics.104.034769]
14. Gu, L., Si, W., Zhao, L., Yang, S. and Zhang, X. (2015). Dynamic evolution of NBS-LRR genes in bread wheat and its progenitors. Molecular Genetics and Genomics, 290: 727-738. [DOI:10.1007/s00438-014-0948-8]
15. Habibzadeh, E., Keshavarzi, M., Afshari, F. and Naghavi, M.R. (2007). Genetic diversity and disease resistance genes variation co-evaluation in wheat by RGA molecular marker. Plant Diseases, 3: 327-337. (In Persian)
16. Jia, J., Zhao, S., Kong, X., Zhao, G., He, W., Appels, R., Pfeifer, M., Tao, Y., Zhang, X. and Li, Y. (2013). Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 496: 91-95. [DOI:10.1038/nature12028]
17. Jiang, H., Wang, C., Ping, L., Tian, D. and Yang, S. (2007). Pattern of LRR nucleotide variation in plant resistance genes. Plant Science, 173: 253-261. [DOI:10.1016/j.plantsci.2007.05.010]
18. Karakas, O., Gurel, F. and Uncuoglu, A.A. (2011). Assessment of genetic diversity of wheat genotypes by resistance gene analog-EST markers. Genetics and Molecular Research, 10: 1098-1110. [DOI:10.4238/vol10-2gmr1065]
19. Kassa, M.T., You, F.M., Hiebert, C.W., Pozniak, C.J., Fobert, P.R., Sharpe, A.G., Menzies, J.G., Humphreys, D.G., Harrison, N.R., Fellers, J.P., McCallum, B.D. and McCartney, C.A. (2017). Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16. BMC Plant Biology, doi: 10.1186/s12870-017-0993-7. [DOI:10.1186/s12870-017-0993-7]
20. Leister, D., Ballvora, A., Salamini, F., and Gebhardt, C. (1996). A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 14: 421-429. [DOI:10.1038/ng1296-421]
21. Ling, H.-Q., Zhao, S., Liu, D., Wang, J., Sun, H., Zhang, C., Fan, H., Li, D., Dong, L. and Tao, Y. (2013). Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 496: 87-90. [DOI:10.1038/nature11997]
22. Liu, J., Liu, X., Dai, L. and Wang, G. (2007). Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. Journal of Genetics and Genomics, 34: 765-776. [DOI:10.1016/S1673-8527(07)60087-3]
23. Ma, J. (2015). Coordination of microRNAs, phasiRNAs, and NB-LRR genes in response to a plant pathogen: Insights from analyses of a set of soybean Rps gene near isogenic lines. Plant Gene, doi:10.3835/plantgenome2014.3809.0044.
24. Maestra, B. and Naranjo, T. (2000). Genome evolution in Triticeae. Chromosomes Today, 13: 155-167. [DOI:10.1007/978-3-0348-8484-6_12]
25. Mantovani, P., Van der Linden, G., Maccaferri, M., Sanguintei, M.C. and Tuberosa, R. (2006). Nucleotide-binding site (NBS) profiling of genetic diversity in durum wheat. Genome, 49: 1473-1480. [DOI:10.1139/g06-100]
26. Mace, E., Tai, S., Innes, D., Godwin, I., Hu, W., Campbell, B., Gilding, E., Cruickshank, A., Prentis, P. and Wang, J. (2014). The plasticity of NBS resistance genes in sorghum is driven by multiple evolutionary processes. BMC Plant Biology, 14: 253- 266. [DOI:10.1186/s12870-014-0253-z]
27. McIntosh, R.A., Welling, C.R. and Park, R.F. (1995). Wheat rusts: an atlas of resistance genes. CSIRO Melbourne, Australia, p.p. 200. [DOI:10.1071/9780643101463]
28. O'Toole, N., Hattori, M., Andres, C., Iida, K., Lurin, C., Schmitz-Linneweber, C., Sugita, M. and Small, I. (2008). On the expansion of the pentatricopeptide repeat gene family in plants. Molecular Biology and Evolution, 25: 1120-1128. [DOI:10.1093/molbev/msn057]
29. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR markers for gerplasm analysis, Molecular Breeding, 2: 225-238. [DOI:10.1007/BF00564200]
30. Reynolds, M., Moya, E.S., Molero, G., Vargas, M. and Payne, T. (2012). Germplasm evaluation and delivery. Proceedings of the 2nd International Workshop of the Wheat Yield Consortium, 12-15 March 2012.CIMMYT, Mexico, D.F.
31. Richly, E., Kurth, J. and Leister, D. (2002). Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Molecular Biology and Evolution, 19: 76-84. [DOI:10.1093/oxfordjournals.molbev.a003984]
32. Roldain-Ruiz, I., Calsyn, E., Gilliand, T.J., Coll, R., van Eijk, M.J.T. and De Loose, M. (2000). Estimating genetic conformity between related ryegrass (Lolium) varieties. 2: AFLP characterization. Molecular Breeding, 6: 593-602. [DOI:10.1023/A:1011398124933]
33. Rommens, C.M. and Kishore, G.M. (2000). Exploiting the full potential of disease resistance genes for agricultural use. Current Opinion in Biotechnology, 11: 120-125. [DOI:10.1016/S0958-1669(00)00083-5]
34. Saghai-Maroof, M.A., Soliman, K., Jorgensen, R.A. and Allard, R.W. (1984). Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance٫chromosome location and population dynamics. Proceeding of National Academic Science USA٫ 81: 8014-8018. [DOI:10.1073/pnas.81.24.8014]
35. Sekhwal, M. K., Li, P., Lam, I., Wang, X., Cloutier, S. and You, F. M. (2015). Disease Resistance Gene Analogs (RGAs) in Plants. International Journal of Molecular Sciences, 16: 19248-19290. [DOI:10.3390/ijms160819248]
36. Shewry, P.R. (2009). Wheat. Journal of Experimental Botany, 6: 1537-1553. [DOI:10.1093/jxb/erp058]
37. Singh, S., Chand, S., Singh, N.K. and Sharma, T.R. (2015). Genome-wide distribution, organization and functional characterization of disease resistance and defense response genes across rice species. PLoS ONE, 10: e0125964. [DOI:10.1371/journal.pone.0125964]
38. Soriano, J. M., Vilanova, S., Llacer, C.R.G. and Badenes, M.L. (2005). Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunusa rmeniaca L.). Theoretical Applied Genetics, 110: 980-989. [DOI:10.1007/s00122-005-1920-0]
39. Tabassum, S., Ashraf, M. and Chen, X. (2010). Evaluation of Pakistan wheat germplasms for stripe rust resistance using molecular markers. Science China Life Sciences, 53:1123-1134. [DOI:10.1007/s11427-010-4052-y]
40. Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2011). MEGA 5: Molecular evolutionary genetics analysis (MEGA) software, version 5.0. Molecular Biology Evolution, 24: 1596-1599. [DOI:10.1093/molbev/msm092]
41. Wang, M., van den Berg, R., Van der Linden, G. and Vosman, B. (2008). The utility of NBS profiling for plant systematics: a first study in tuber-breeding Solanum species. Plant Systematics and Ecology, 276: 137-148. [DOI:10.1007/s00606-008-0087-y]
42. Wang, S.S., Wang, F., Tan, S.J., Wang, M.X., Sui, N. and Zhang, X.S. (2014). Transcript profiles of maize embryo sacs and preliminary identification of genes involved in the embryo sac-pollen tube interaction. Frontiers In Plant Science, 5: 702-716. [DOI:10.3389/fpls.2014.00702]
43. Wei, H., Li, W., Sun, X., Zhu, S. and Zhu, J. (2013). Systematic analysis and comparison of nucleotide-binding site disease resistance genes in a diploid cotton Gossypium raimondii. PLoS ONE, 8, e68435. [DOI:10.1371/journal.pone.0068435]
44. Wise, R.P. (2000). Disease resistance: what's brewing in barley genomics? Plant Disease, 84: 1160-1170. [DOI:10.1094/PDIS.2000.84.11.1160]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khanmakoo F, Mohammadi S A, Salami R, Aharizad S. Diversity of Resistance Gene Analogues in Rust Resistance and Susceptible Bread Wheat Varieties. pgr 2019; 5 (2) :29-40
URL: http://pgr.lu.ac.ir/article-1-128-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 5, Issue 2 (2019) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4657