|
|
|
Search published articles |
|
|
Showing 4 results for Tolerance
Seyedeh Zahra Hosseini, Ahmad Ismaili, Seyed Sajad Sohrabi, Volume 5, Issue 2 (3-2019)
Abstract
Drought is a threaded factor in the world production and application of breeding methods could improve the tolerant and adapted cultivators under drought stress condition. In order to evaluate and determine the stress tolerance indices and identifion of tolerant genotypes to drought stress, 15 safflower genotypes were evaluated in a randomized complete block design with three replications in two conditions (stress and non-stress). Analysis of variance showed significant differences among genotypes for all traits, stress tolerance indices and yield in both conditions. Significant positive correlation was found between grain yield in the stress condition with indicators stress tolerance index, harmonic mean and geometric mean productivity indicating that these indices are suitable criteria for screening drought tolerant genotypes. No significant correlation was observed between Ys with tolerance index and mean productivity, hence they can be discarded as the desirable markers for identifying drought tolerant genotypes. In conclusion, using a graphical approach of three dimensional scatter plots, Principal component analysis and biplot analysis, two tolerant genotype (Syrian and Kino-76) were selected for future programs in stress and non-stress condition.
Sara Motallebinia, Omid Sofalian, Ali Asghari, Ali Rasoulzadeh, Bahram Fathi, Volume 6, Issue 1 (9-2019)
Abstract
In the present study, in order to evaluate the drought tolerance indices and their relationship with ISSR markers, 12 rapeseed genotypes were studied using a factorial experiment based on completely randomized block design under the three irrigation treatments (control and irrigation after drainage of 60 and 85% moisture content) in the greenhouse of Mohaghegh Ardabili University, Iran. Drought tolerance genotypes were evaluated by quantitative indices including MP, GMP, SSI, STI and TOL. Cultivars in all five of indices at two levels of stress exhibited significant differences. Regarding the results of the mean comparison at both levels of stress, SLMO46 was identified as the most resistant cultivar with the highest amount of MP and STI, and Karun was the most sensitive one with the highest amount of SSI index. According to the results of factor analysis, in the first level of stress, Sarigol32 and Karun were sensitive, and in the second level of stress, Talaye and Sarigol32 were sensitive as well. SLMO46 was known to be resistant to stress in both levels of stress. Phenotypic correlation of grain yield under stress and non-stress conditions was investigated in two levels of stress with 5 drought indices. In first level of stress condition, grain yield had a positive and significant correlation with mean productivity, geometric mean of productivity and stress tolerance index. In the second level of stress condition, the same correlation was observed with the difference that there was no significant correlation between drought tolerance and tolerance indices. Canonical correlation analysis was performed between drought indices and molecular markers. Five ISSR primers (5, 9, 11, 14 and 19) with the highest polymorphic percentages were used for calculation using the first factor coefficients. ISSR-PCR was used to identify some of the molecular markers associated with drought tolerance indices. A total of 106 clear and score-able loci were amplified by 18 ISSR primers, of which 60 bands (56.6%) were polymorphic. Finally, according to the results, these markers can be used in rapeseed breeding programs for drought tolerance.
Fatemeh Darvishnia, Mohammadhadi Pahlevani, Khalil Zaynali Nezhad, Khosro Azizi, Saied Bagherikia, Volume 7, Issue 1 (9-2020)
Abstract
In order to determine the most effective indices for quantifying drought tolerance and identify genotypes that are tolerant to water stress in bread wheat, 50 bread wheat genotypes were compared in a randomized complete block design with three replications under both the non-stress dry farming with two complementary irrigation and the water stress dry farming conditions in Khorramabad, Iran. Analysis of variance showed that there was a significant difference among the genotypes in terms of all of the traits except the number of spike per area. In this study, eight indices including: Stress Tolerance Index (STI), Geometric Mean Productivity (GMP), Mean Productivity (MP), Yield Index (YI), Harmonic Mean (HM), Yield Stability Index (YSI), Stress Susceptibility Index (SSI), and Tolerance index (TOL) were calculated by using of seed yield of the genotypes under both conditions. Indices that selection based on them will improve the yield in both conditions, are considered as suitable index. STI, GMP, MP and HM were introduced as suitable index for drought resistance selection. Genotypes Shiroodi and S-90-5 were determined as the most appropriate based on 3D plot. Based on positive correlation between water stress resistance indices and yield under stress and non-stress environments, STI and GMP were the best indices. By using the Biplot method, Shiroodi, S-90-5 and Oroum genotypes were considered as high yielding potential genotypes under the both conditions. According to the results of cluster analysis, genotypes were classified into three groups based on drought tolerance indices. Graphical analysis of genotypes also showed that genotypes Shiroodi and S-90-5 were more profitable than others under both drought stress and non-drought stress conditions. These genotypes could also be used as parents caring desirable genes in the crossing programs and selection of tolerate genotypes.
Maryam Rasoulzadeh Aghdam, Reza Darvishzadeh, Ebrahim Sepehr, Hadi Alipour, Volume 8, Issue 1 (8-2021)
Abstract
Nutrient deficiencies are important abiotic stresses that can affect plant growth and development. In this study, 76 sunflower pour lines collected from different regions of the world were evaluated in pot using some physiological traits with combined analysis of completely randomized design with three replications under optimal and phosphorus deficit conditions. Phosphorus deficiency decreased the means of all studied traits except canopy temperature. Oilseed sunflower lines were grouped into five and four clusters in each one of optimum and phosphorus deficient conditions, respectively. However, in both optimum and phosphorus deficient conditions, lines 19, 21, 27, 44 and 71 were classified into desirable cluster with high yield and yield components. Multivariate tolerance index (MFVD) for each genotype was calculated using the ratio and productivity matrices of the studied traits under optimal and phosphorus deficit conditions using principal component analysis on the resulting matrices. Based on the resulting biplot, lines 71, 74, 65, 21, 39, 7, 18 and 11 were introduced as desirable and phosphorus deficit tolerant lines.
|
|