|
|
|
|
Search published articles |
|
|
Showing 2 results for Resistant Cultivars
Leila Fahmideh, Mohammad Ali Delarampoor, Ziba Fooladvand, Volume 7, Issue 1 (9-2020)
Abstract
Drought, an abiotic stress, considered as one of the factors limiting food resources. The plant responses to adaptive to such a condition are accompanied with changes in the expression pattern of some functional as well as regulatory genes. The MYB proteins include a big family of transcription factors which are highly important in regulating development process and immunizing responses of plants. This research was conducted to evaluate the expression of TaMYB73 transcription factor and catalase and polyphenol peroxidase enzymes activity in bread wheat cultivars (Hamoon, Hirmand, Kavir, Bolani, and Cross Bolani) under drought stress conditions. Factorial experiment was conducted in pot based on a completely randomized block design with three replications. Following 45 days from seed planting (four- leaf stage), drought stress was done at five levels of different irrigation and then the leaves of treated plants were sampled to measure of enzyme activity and gene expression. After RNA extraction and c DNA synthesis, the gene expression pattern was evaluated using Real-time PCR and data analysis was performed via 2-ΔΔ ct method. The results showed that TaMYB73 gene expression level as well as the catalase and polyphenol peroxidase enzymes activities corresponding to the Hirmand cultivar was higher than the other cultivars.
Seyyed Mohsen Sohrabi, Seyed Karim Mousavi, Volume 9, Issue 2 (3-2023)
Abstract
Chickpea (Cicer arietinum L.) is one of the most important crops in the world. After bean and pea, chickpea is the most important cold season legume. Weeds are one of the most important threats to chickpea production worldwide. Due to the sensitivity of chickpea to herbicides, the majority of herbicides are used pre-emergence and the use of post-emergence herbicides is limited, and therefore weeds cause a significant decrease in chickpea yield. Therefore, herbicide-tolerant chickpea cultivars that have a higher flexibility for post-emergence herbicide application are needed to improve the chickpea yield. In this study, using seed bioassay and PCR method, resistance mechanism of Iranian chickpea cultivars to Pursuit herbicide was investigated. The results showed a significant genotypic and phenotypic variation among Iranian chickpea cultivars for tolerance to the Pursuit herbicide. The results did not show a difference between the target genes of Pursuit herbicide, ALS1 and ALS2, in all investigated cultivars with that of the reference sequences in the GenBank. This proves that the resistance observed in different chickpea cultivars to the herbicide Pursuit is not associated with the target site resistance mechanism and probably follows a non-target resistance mechanism. The superior genotypes of this study (Bivanij, Aksou, Mansour, TDS-Maragheh90-400 and TDS-Maragheh90-358) can be recommended to farmers and also suggested as parents to produce natural herbicide resistant chickpea plants in breeding programs.
|
|
|
|
|
|