[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 6 results for Resistance

Khadijeh Mousa Khalifani, Reza Darvishzadeh, Masoud Abrinbana, Aram Nouri,
Volume 5, Issue 2 (3-2019)
Abstract

Sunflower (Helianthus annuus L.) is an important crop that its oil has nutritional and high economic value. Basal stem rot, caused by Sclerotinia sclerotiorum and S. minor, is one of the important and devastating disease of sunflower. The use of resistant cultivars is considered as the most important and effective method to control the disease. In this study, the reaction of 100 oily sunflower lines to three isolates of S. sclerotiorum and three isolates of S. minor was studied. Identification of gene loci associated with resistance to disease was done with markers produced with 30 SSR primers pairs. The results showed that some of sunflower genotypes had well resistant to Sclerotinia disease. Population structure analysis using Structure software identified 2 subpopulations (K=2). Association analysis using TASEEL software with general and mixed linear models (GLM and MLM) identified 14 and 12 loci, respectively that have significant association with resistant genes related to Sclerotinia. ORS617 locus was commonly related to genes associated with resistance to M1 from S. minor and J1 from S. sclerotiorum. The common markers are important in sunflower breeding programs making possible simultaneously selection for several traits and producing resistant cultivars to Sclerotinia disease.
Faranak Khanmakoo, Seyed Abolghasem Mohammadi, Robab Salami, Saeed Aharizad,
Volume 5, Issue 2 (3-2019)
Abstract

Fungal diseases, especially leaf and stripe rusts are wheat yield reducing factors in Iran and the world. In this study, genetic diversity of 20 wheat varieties with different response to leaf and stripe rusts were studied using primers designed based on the conserved regions of plant disease resistance genes. The banding patterns of polymorphic markers were scored as dominant and number of amplified bands and percentage of polymorphism were determined. In addition, for each primer combination, polymorphic information content (PIC) and marker index (MI) were calculated. Out of the 11 used single primers and primer combinations, five primer combinations and a single primer produced scorable amplification. The maximum and minimum of PIC were observed for LLOOP-1 and H2016-H2020 primer combination with mean value of 0.50 and 0.28, respectively. The primer combinations of H2016-H1146 and H2016-H2020 with mean values of 4.80 and of 2.84, had minimum and maximum of MI, respectively. Cluster analysis based on Neighbor-Joining algorithm and evolutionary P-distance coefficient assigned the varieties into four groups which were in agreement with their response to yellow rust. In principal coordinate analysis, the scatter plot of varieties based on two first coordinates confirmed the groups obtained from cluster analysis.
Maryam Tahmasbali, Reza Darvishzadeh, Amir Fayaz Moghaddam,
Volume 7, Issue 1 (9-2020)
Abstract

In a breeding program, it is important to find out information about the genes action, because knowledge in this field could help the researchers in their crossing programs and realizing effective selection. In this study, breeding values of different agronomic traits in oriental tobacco were predicted using the best linear unbiased prediction (BLUP) procedure. For this purpose, 89 tobacco genotypes were evaluated in a randomized complete block design with three replications under normal (without broomrape) and stress (with broomrape) conditions at Urmia Tobacco Research Centre, during two successive years. Broomrape stress was applied by mixing 0.06 gr broomrape seed with soil in pots. C.H.T.209.12e × F.K.40-1 genotype had high yield under both normal and broomrape stress conditions and was one of the desirable genotypes in terms of yield tolerance and stability index. The Rustica genotype was the best genotype in terms of the breeding value of most of studied traits in both normal and broomrape stress conditions. The result from cluster analysis based on the breeding values of the studied traits showed that, tobacco genotypes were divided into 6 and 5 groups in normal and broomrape stress conditions, respectively; but the distribution of genotypes within the groups was different depending on the conditions. The highest heritability was observed for root fresh weight under normal condition and for leaf fresh weight under broomrape stress conditionss. The results showed that a genotype with good phenotypic performance may have low breeding value. Therefore, considering breeding value information along with phenotypic mean of traits can increase the efficiency of breeding programs.

Samira Karimi, Maghsoud Pazhouhandeh, Kambiz Azizpour,
Volume 9, Issue 1 (9-2022)
Abstract

Transgenic plants and their products are being developed day by day due to their improved characteristics, and it is necessary to evaluate the safety of these plants before releasing them. Hence, the importance of the issue of biosafety of transgenic plants and the use of their products has led the regulatory agencies to create some laws called substantial equivalence. based on that, the essential nutrients of transgenic plants are examined and compared with the control. The present study aimed to compare the transgenic potato line F (salinity-resistant) with non-transgenic Agria cultivar plants. The salt resistant potato line was produced by transferring Arabidopsis SOS3 gene to potato (Agria variety) and its resistance was confirmed. First, the presence of AtSOS3 gene in F-line plants was confirmed and then the substantial equivalent experiments were performed by comparing the production of proline, soluble sugars, carotenoids and chlorophylls a and b, the relative expression of Catalase1 (CAT1) and AtSOS3 gene between F and non-transgenic WT Agria plants. Based on evaluations of physiological traits and some metabolites (proline content, soluble sugars, carotenoids and chlorophylls a and b) and morphological traits (plant height, dry and fresh weight of plant) between line F and WT, no significant difference was observed. The number of microbiome colonies around the root in the transgenic F and non-transgenic WT plants was a non-significant difference, which indicates that the transgenic line has no threatening effects on the environment and human pathogenicity. The relative expression of AtSOS3 and Catalase1 genes in line F had higher values than WT. The reason for such increase in the expression of Catalase1 is the activation of plant defense mechanisms against stress. Finally, the results of the evaluations proved the equality of line F and WT

Seyyed Mohsen Sohrabi, Seyed Karim Mousavi,
Volume 9, Issue 2 (3-2023)
Abstract

Chickpea (Cicer arietinum L.) is one of the most important crops in the world. After bean and pea, chickpea is the most important cold season legume. Weeds are one of the most important threats to chickpea production worldwide. Due to the sensitivity of chickpea to herbicides, the majority of herbicides are used pre-emergence and the use of post-emergence herbicides is limited, and therefore weeds cause a significant decrease in chickpea yield. Therefore, herbicide-tolerant chickpea cultivars that have a higher flexibility for post-emergence herbicide application are needed to improve the chickpea yield. In this study, using seed bioassay and PCR method, resistance mechanism of Iranian chickpea cultivars to Pursuit herbicide was investigated. The results showed a significant genotypic and phenotypic variation among Iranian chickpea cultivars for tolerance to the Pursuit herbicide. The results did not show a difference between the target genes of Pursuit herbicide, ALS1 and ALS2, in all investigated cultivars with that of the reference sequences in the GenBank. This proves that the resistance observed in different chickpea cultivars to the herbicide Pursuit is not associated with the target site resistance mechanism and probably follows a non-target resistance mechanism. The superior genotypes of this study (Bivanij, Aksou, Mansour, TDS-Maragheh90-400 and TDS-Maragheh90-358) can be recommended to farmers and also suggested as parents to produce natural herbicide resistant chickpea plants in breeding programs.

Fatemeh Bagherzadeh, Hannaneh Mirahmadi, Soraya Pourtabrizi, Ali Kazemipour, Maryam Dorraninejad, Roohollah Abdoshahi,
Volume 11, Issue 1 (9-2024)
Abstract



Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 32 queries by YEKTAWEB 4657