|
|
|
Search published articles |
|
|
Showing 7 results for Protein
Robab Salami, Seyed Abolghasem Mohammadi, Sara Ghafarian, Mohammad Moghaddam, Volume 2, Issue 2 (3-2016)
Abstract
Barley is the most salt tolerant cereal‚ and is grown in a wide range of climatic conditions. To improve the plant tolerance to salinity‚ expression analysis of genes involved in stress tolerance could be effective in identification and development of tolerant genotypes. In this study, for evaluation of salinity effect on expression of Hv TIP2;3 and Hv TIP4;1 genes (encoding channel proteins in the membrane) in roots of barley, three genotypes; Clipper (salt susceptible), Sahara3771 (salt tolerant) and advanced breeding line (a salt tolerant line derived from a cross between Kavir and Sahra cultivars) were planted under 0, 100 and 200 mM NaCl. To determine the expression differences of these genes, RNA was extracted from root samples harvested at 24 hours, 3 days and 3 weeks after applying salinity treatments and cDNA was generated. Analysis of variance revealed a significant difference among genotypes, salinity levels and sampling stages for Hv TIP2;3 and Hv TIP4;1 genes expression pattern, whereas genotype × salinity interaction for Hv TIP2;3and genotype × sampling stage interaction were significant for both of the studied genes. The expression of TIP 2;3 gene in the 100 mM NaCl was increased in salt susceptible genotype Clipper and decreased in tolerant genotypes compared with control. Mean comparison of genotype and sampling combination showed that the expression level of Hv TIP4;1 gene at 3 weeks after salinity stress was increased in Sahara and advanced breeding line and decreased in Clipper. According to the results‚ it was confirmed that these genes are affected by salinity stress‚ and effective utilization of this genes in the barley in order to increase salinity tolerance could lead to desirable results.
Mohaddaseh Gholami Farahabadi, Gholam Ali Ranjbar, Ali Dehestani-Kalagar, Nadali Bagheri, Volume 8, Issue 1 (8-2021)
Abstract
Bread’s quality depends on wheat flours quality and quantity and for the goal to be achieved, the usage of suitable wheat varieties should be considered. Present study focuses on analyzing doubled-haploid lines of wheat’s bread backing quality and the relationship between qualitative traits and glutenins reservoir proteins. In current work, traits related to bread backing quality of 30 doubled-haploid lines of wheat including their parents and two control varieties (Ehsan and Morvarid) were evaluated. SDS-PAGE test was conducted to identify total amount of protein and the relationship between seeds reservoir proteins and qualitative traits, afterward, a test was conducted to evaluate expression of genes involved in bread backing quality. Results showed that there are significant differences on evaluated traits among all wheat’s genotypes. The highest volume of Zeleny sediment were related to DH-143 and DH-159 (34 and 31 ml, respectively), the highest amount of wet gluten were attributed to DH-159 and DH-143 (77.8 and 74.85 gr, respectively), the highest amount of dry gluten were attributed to DH-159 and DH-143 (26.21 and 25.11 gr, respectively), the highest amount of water absorption percentage were attributed to DH-159 and DH-143 (51.59 and 49.74%, respectively), and the highest percentage of protein content were attributed to DH-143 and DH-159 lines (with the amount of 18.03 and 17.72% respectively). Analyzing of bread backing quality traits indicated that DH-143 and DH-159 were better than the other genotypes. SDS-PAGE test results pointed that the highest amount of seed’s protein is attributed to DH-159 and DH-143 (28.23 and 26.63 µ/gr, respectively). Based on gene expression analysis (using real-time PCR), it was indicated that lines DH-143 and DH-159 had a higher level of expressed than the control treatments for HMW-X, HMW-Y and PDIL genes. Therefore, lines DH-143 and DH-159 could be used in breeding program for optimizing bread backing quality.
Soheila Afkar, Faranak Hadi, Ali Ashraf Jafari, Volume 8, Issue 2 (3-2022)
Abstract
Festuca is one of the largest genera of the grass family, which has more than 600 species with different ploidy levels. The aim of this study was to estimate the genetic diversity within 22 populations of three species of Festuca (Festuca arundinacea, F.rubra and F.ovina) using a seed storage protein electrophoresis pattern. These species showed a significant variation in the number of protein bands from 5-13. The highest number of bands was found in G17 (F.rubra) and the lowest number of protein bands was in G5 (F.ovina). Band number 14 was only observed in G3. It is suggested that this band can be considered as a specific band for the identification of this genotype. According to the results of AMOVA analysis, there is a high level of genetic diversity within the species rather than between species that can be due to the out-crossing nature of this genus. According to observed differences for variation parameters among the three studied species, it is concluded that they have dissimilar genetic structures. The results of cluster analysis based on seed storage protein profiles in evaluated genotypes using Euclidean distance matrix and UPGMA method showed four groups. The lowest similarity coefficient was between G14 and G15 (F.arundinacea) with G6 (F.ovina). Hence, it is suggested that they evolved from a different evolutionary process and it is suggested to use them as the parents of new synthetic varieties. The observed diversity in the seed protein pattern in the three species of Festuca, can be explained by allogamy-induced-heterozygosity, species difference or population collection from various regions.
Seyyed Mohsen Sohrabi, Seyed Karim Mousavi, Volume 9, Issue 2 (3-2023)
Abstract
Chickpea (Cicer arietinum L.) is one of the most important crops in the world. After bean and pea, chickpea is the most important cold season legume. Weeds are one of the most important threats to chickpea production worldwide. Due to the sensitivity of chickpea to herbicides, the majority of herbicides are used pre-emergence and the use of post-emergence herbicides is limited, and therefore weeds cause a significant decrease in chickpea yield. Therefore, herbicide-tolerant chickpea cultivars that have a higher flexibility for post-emergence herbicide application are needed to improve the chickpea yield. In this study, using seed bioassay and PCR method, resistance mechanism of Iranian chickpea cultivars to Pursuit herbicide was investigated. The results showed a significant genotypic and phenotypic variation among Iranian chickpea cultivars for tolerance to the Pursuit herbicide. The results did not show a difference between the target genes of Pursuit herbicide, ALS1 and ALS2, in all investigated cultivars with that of the reference sequences in the GenBank. This proves that the resistance observed in different chickpea cultivars to the herbicide Pursuit is not associated with the target site resistance mechanism and probably follows a non-target resistance mechanism. The superior genotypes of this study (Bivanij, Aksou, Mansour, TDS-Maragheh90-400 and TDS-Maragheh90-358) can be recommended to farmers and also suggested as parents to produce natural herbicide resistant chickpea plants in breeding programs.
Fatemeh Derikvand, Eidi Bazgir, Mostafa Darvishnia, Hossein Mirzaei Najafgholi, Volume 10, Issue 1 (9-2023)
Abstract
Apple is one of the most important economic products of Iran and the world. Apple brown rot disease (Monilinia laxa) is one of the important diseases that causes yield loss in pre-harvest and post-harvest stages. In this research, the amount of changes in some defense compounds of apple fruit, including peroxidase and catalase enzymes, following inoculation with M. laxa was assessed. Extraction and measurement of peroxidase and catalase enzymes were done at 0, 3, 6, 9 and 12 days post inoculation with M. laxa. Also, in this study, the changes in the expression of PR1 and PR8 genes in response to brown rot disease in apple fruit was recorded at 12, 24, 48 and 96 hours along with controls. The results of the analysis of variance of resistance genes expression at different time points were significant. After 48 hours, the expression of PR1 and PR8 genes was observed to be the highest compared to the control. The expression of PR1 and PR8 genes was observed to be 3 and 8 times that of the control, respectively. In this research, the expression of PR1 and R8 genes was assessed for the first time following M. laxa inoculation in apples. Results of the present study showed that reseistance genes as well as the antioxidant enzymes can help to improve resistance against apple brown rot disease as an important storage pathogens for long-term storage.
Nasrin Akbari, Siamak Alavi Kia, Mostafa Valizadeh, Volume 10, Issue 2 (2-2024)
Abstract
Due to world population incline and the increasing wheat consumption as human main staple food, as well as high amount of waste of bread which is mainly due to its low quality, the wheat breeding programs to improve bread quality are of great importance. Therefore, evaluating the wheat grains quality and the genetic variation of bread-making quality traits among lines derived from crosses becomes imperative. To this end, the gliadin protein banding pattern of 28 recombinant inbred lines, their corresponding parents and 10 other commercial cultivars were examined via A-PAGE method. The variation between and within the lines and cultivars was determined using AMOVA according to the protein bands. The results of this study revealed high variation for gliadins coding loci with total mean of 73.96%. The percentage of polymorphism was estimated to be 91.67 and 56.25 for lines and commercial cultivars, respectively. The minimum and maximum number of gliadin bands were 12 and 25 bands, respectively. Also, based on PhiPT statistics, the significant difference was observed (P<0.05) between commercial cultivars and recombinant inbred lines in terms of gliadin banding patterns. Cluster analysis and PCoA via banding pattern of gliadins led to formation of three and four distinct groups, respectively. The highest variation was observed in ω-gliadins, suggesting that they may have a role in observed variation among genotypes and their bread making-quality traits.
Behnaz Seifolahpour, Sohbat Bahraminejad, Kianoosh Cheghamirza, Shahryar Sasani, Volume 11, Issue 1 (9-2024)
Abstract
|
|