|
|
|
Search published articles |
|
|
Showing 7 results for Polymorphism
Maryam Ahmadi, Mustafa Valizadeh, Mahmoud Tourchi, Mohammad Moghaddam Vahed, Hossein Mohammadzadeh Jalaly, Volume 1, Issue 1 (5-2014)
Abstract
For evaluation of genetic diversity among improved alfalfa varieties and Iranian landraces, 12 populations including five improved varieties (Kaysari, Kadi, Ranger, Mesmir, Seariver) and seven landraces (Gharayonje, Amozeynadin, Rahnani, Tazekand, Shazand, Hamedani, Yazdi) were evaluated using agronomic traits and enzyme markers. Thirty-five individuals of each variety were grown and analyzed in separate pots in a unbalanced completely randomized design (CRD). Analysis of variance for agronomic traits showed significant differences for most of the traits among improved and landrace varieties. For esterase and peroxidase enzymes based on presence or absence of enzyme bands (1, 0) eleven polymprphic isozyme bands were detected. For improved and landrace varieties Shanon index mean was 0.48 ± 0.246 and 0.519 ± 0.193, respectively, furthermore Nei genetic diversity index mean for improved and landraces was 0.327 ± 0.181 and 0.352 ± 0.148 respectively, suggesting no difference between improved and landrace varieties was found. Analysis of relation between isozyme markers and agronomic traits showed that there are significant differences between the presence of POX-4 and wet and dry yield in improved varieties.
Zeinab Bahari, Abdolali Shojaeiyan, Sajad Rashidi Monfared, Amin Mirshekari, Khadije Nasiri, Marzieh Amiriyan, Volume 2, Issue 1 (5-2015)
Abstract
Knowledge about the amount of genetic diversity and understanding relationship between species and landraces is an important step in plant germplasm conservation. In this study, within and between genetic diversity of 17 dill landraces (Anethum graveolens L.) from different areas of Iran was evaluated using five ISSR markers. In total, 29 polymorphic bands were generated. The average of polymorphism was 54.7%. The highest and the lowest values of Polymorphic Information Contents were 0.46 for ((CA)8G primer) and 0.40 for ((AG)8T primer), respectively, and with an average of 0.43. Based on the highest and the lowest indices of Polymorphic Loci (0.392 and 0.248), expected heterozygosity (93.10 and 62.07) and shannon's Information Index (0.567 and 0.360) between all populations, the highest and lowest genetic diversity was detected among Ardebil and Azarshahr genotypes, respectively. The genetic dissimilarity matrix showed that Sari and Kerman populations had the highest genetic distance and Ardabil and Borazjan populations had the lowest ones. Partitioning variations within and between populations, using an analysis of molecular variance (AMOVA), showed that 12% of the total genetic variation existed between growing regions. Cluster analysis based on UPGMA method showed a poor relationship between genetic distance and the geographical grouping of dills.
Marziyeh Shazdehahmadi, Mahin Kharrazi, Volume 2, Issue 2 (3-2016)
Abstract
Determination of genetic diversity of breeding material is the first step in breeding programs. Evaluation of tobacco genetic diversity is essential for breeding programs and preservation of genetic resources. Genetic diversity level in tobacco genotypes, is very important for selection of parents in breeding programs. In this study, genetic diversity of 100 tobacco genotypes was evaluated using 25 ISSR markers. Banding pattern based on the presence or absence of the bands showed with 0 and 1, respectively. Out of 237 fragments produced in total cultivars, 195 bands were polymorphic and average of polymorphism ranged from 4 to 12 per primer. Average of polymorphism percentage was 94.10. To determine the efficiency of ISSR markers, PIC and their polymorphic percentage was calculated. UBC 818, UBC 812 and UBC 815 had the best marker parameters and were introduced as the best primers for assessment of genetic diversity. In order to evaluate the genetic similarity between cultivars, different similarity coefficient (SM, Dice and Jaccard) was calculated and Mantel corresponding test was performed. Finally, dendrogram was drawn based on SM similarity coefficient and UPGMA algorithm and the Cofenetic coefficient was calculated. All genotypes formed two distinct clusters indicating the high efficiency of used primers in amplification the approximate parts of the genome. The principle coordinate analysis showed that the first three components could explain 79.65 % of total variance. Totally, evaluation the tobacco genetic diversity using ISSR markers is suitable and ISSR marker can be used as appropriate marker system to identify the diversity and genetic relationship for breeding programs of this plant.
Mehdi Ramezani, Mehdi Rahimi, Volume 4, Issue 1 (9-2017)
Abstract
Ispaghula (Plantago ovata) is used to reduce gastrointestinal and urinary tract infections, as well as control blood glucose and cholesterol levels in the human body. The phylogeny and genetic diversity of 22 different ecotypes of Ispaghula were evaluated using 12 ISSR markers and nine morphological and phenological traits. Analysis of variance showed that there were significant differences among cultivars for all traits. Cluster analysis grouped 22 different ecotypes of Ispaghula in two groups using UPGMA method based on field data. The assessment of genetic diversity among ecotypes based molecular markers showed that the 12 primers amplified 91 polymorphic bands. The maximum number of bands (11) was produced by UBC813 and primers UBC811 with 10 bands were in the next steps, respectively. The minimum band number (4) was produced by UBC824. Polymorphism information content (PIC) value was varied from 0.26 to 0.45 and Marker index (MI) was varied from 0.90 to 4.13. Cluster analysis using UPGMA based on molecular markers, placed 22 ecotypes in the study in five groups, include 1, 1, 2, 3 and 15 ecotypes, respectively. Grouping of ecotypes with molecular markers was different with classification of the ecotypes based morphological traits. According to the results, ecotypes that are far apart can be used in the breeding program of Ispaghula.
Leili Tahani, Mehrana Koohi Dehkordi, Hamid Dehghanzade, Volume 6, Issue 1 (9-2019)
Abstract
German chamomile (Matricaria chamomilla L.) is an s an annual plant of the composite family Asteraceae. This plant is native to the Mediterranean region, and some researchers have reported its origins in Asia. The aim of this study was to investigate the genetic diversity of nine chamomile populations using the SCoT marker. Ten SCoT primers were used. A total of 141 bands were produced, of which 140 bands (96.5%) showed polymorphism. Cluster analysis was performed using UPGMA algorithm based on Jaccard's coefficient of similarity. The results of cluster analysis and principal components analysis divided the chamomile population into four groups. The results of the analysis of molecular variance (AMOVA) showed that the inter-group variation was greater than the intra-group variation, so that 55% of variation was related to the diversity among the groups. The results of this study showed that SCoT markers have high efficiency in determining the genetic diversity and relationships of the chamomile populations.
Saeid Navabpour, Ahad Yamchi, Sasan Golcheshmeh, Volume 8, Issue 1 (8-2021)
Abstract
The present study was performed to classify and study genetic diversity between Calotropis procera accessions from different regions of Kerman province (Iran) using ISSR markers. In total, DNA from 14 plant samples with nine ISSR primers was amplified by PCR and their banding pattern was obtained. The primers showed acceptable polymorphism (35.93) and minimum and maximum polymorphic information content (PIC) of primers in this study were 0.11 for ISSR9 primer and 0.41 for ISSR3 and ISSR8 primers, respectively. Genetic similarity based on Nei index was varied from 0.405 to 0.745 and the lowest genetic similarity was found between J3 (Related to Jiroft) and D2 (Related to Dosari) and the highest genetic similarity was found between J1 and J2 (both of them for Jiroft). By using UPGMA cluster analysis, samples divided into four groups, and the second and third groups contained more accessions. In terms of genetic similarity, two accessions of Jiroft 1 (J1) and Jiroft 2 (J2) which classified in the same cluster were closer. Also, the accessions collected from Anbarabad were at a longer genetic distance than other accessions. Principal coordinate analysis also showed that the first and second components justify 67 percent of obtained genetic diversity. In general, ISSR markers were useful for classifying Calotropis procera accessions and according to the obtained information about existence of genetic diversity between Calotropis procera accessions of Kerman province, this diversity could be useful in the future for breeding and production of Calotropis procera.
Faraneh Roshan, Mohammad Rabiei, Behrouz Shiran, Volume 11, Issue 1 (9-2024)
Abstract
Violet plants (Viola sp.) belonging to the Violaceae family are ornamental plants that could be used for drug design due to their cyclotidic compounds. In this study, 21 different ecotypes of violets were collected from the northern regions of Iran. After DNA extraction, the genetic diversity of ecotypes was investigated using the iPBS molecular marker. Twelve iPBS primers used during the present investigation resulted in 214 bands. The average percentage of observed polymorphism, polymorphic information content (PIC), and marker index (MI) were calculated to be 31.92%, 0.35%, and 5.64% respectively. The Nei genetic distance index ranged between 0 and 0.66. The results of this study indicated a considerable genetic diversity among the violet ecotypes and the efficiency of the iPBS marker in detecting polymorphism. The population genetic analysis showed that 61% of the diversity was associated with intra-species diversity. The species V. odorata and V. alba exhibited the greatest degrees of polymorphism, effective allele number, Shannon index value, and heterozygosity ratios. Also, the dendrogram depicted the close genetic relationship between these two species, as evidenced by Nei's genetic distance measurements. In general, considering the existing taxonomic information and the results obtained from this experiment, it can be concluded that the use of the iPBS marker was highly effective in systematic studies of the genus Viola. The results of this experiment led to the appropriate differentiation of ecotypes and species, which could be used in further breeding studies.
|
|