|
|
|
|
Search published articles |
|
|
Showing 2 results for Polymorphic Information Content
Zeinab Bahari, Abdolali Shojaeiyan, Sajad Rashidi Monfared, Amin Mirshekari, Khadije Nasiri, Marzieh Amiriyan, Volume 2, Issue 1 (5-2015)
Abstract
Knowledge about the amount of genetic diversity and understanding relationship between species and landraces is an important step in plant germplasm conservation. In this study, within and between genetic diversity of 17 dill landraces (Anethum graveolens L.) from different areas of Iran was evaluated using five ISSR markers. In total, 29 polymorphic bands were generated. The average of polymorphism was 54.7%. The highest and the lowest values of Polymorphic Information Contents were 0.46 for ((CA)8G primer) and 0.40 for ((AG)8T primer), respectively, and with an average of 0.43. Based on the highest and the lowest indices of Polymorphic Loci (0.392 and 0.248), expected heterozygosity (93.10 and 62.07) and shannon's Information Index (0.567 and 0.360) between all populations, the highest and lowest genetic diversity was detected among Ardebil and Azarshahr genotypes, respectively. The genetic dissimilarity matrix showed that Sari and Kerman populations had the highest genetic distance and Ardabil and Borazjan populations had the lowest ones. Partitioning variations within and between populations, using an analysis of molecular variance (AMOVA), showed that 12% of the total genetic variation existed between growing regions. Cluster analysis based on UPGMA method showed a poor relationship between genetic distance and the geographical grouping of dills.
Reza Mir Drikvand, Asma Khyrolahi, Asa Ebrahimi, Mohammad Rezvani, Volume 2, Issue 1 (5-2015)
Abstract
In this study, genetic diversity of 25 rainfed bread and durum wheat genotypes were assessed using 20 SSR primers that all of them were generated scorable bands. Totally 69 alleles (ranged between 2 allele for Xcfd40 and Xgwm369, and 5 allele for Xbarc54 primers per each locus), were distinguished. Polymorphic information content (PIC) for all SSR primers was calculated. The highest (0.98) and the lowest (0.64) amount of PIC was pertained to Xcfd40 and Xgwm30 primers, respectively. Based on similarity matrix, the highest and lowest genetic similarity was belonged to Seri82 and Seri (0.86) and Sita/chil and Baviacora (0.14), respectively. Cluster analysis could distinct spring and winter wheat genotypes and as well as bread and durum wheat genotypes. It was concluded that SSR marker was suitable for evaluation of genetic diversity in rainfed wheat genotypes. This genetic diversity can be used in wheat breeding programs.
|
|
|
|
|
|