|
|
|
|
Search published articles |
|
|
Showing 1 results for Peroxidase
Seyedeh Sanaz Ramezanpour, Hassan Soltanloo, Saied Navabpour, Volume 10, Issue 2 (2-2024)
Abstract
To evaluate the effect of fungus Blumeria graminis (powdery mildew disease) on expression of genes associated with resistance reactions in barley, a susceptible cultivar (Afzal), a semi-susceptible genotype (Line 67) and a resistant genotype (Line 104) were selected. Following inoculation with Blumeria graminis at seedling stage, sampling was performed at different time points (0-10 days). Changes in gene expression levels were measured by qRT-PCR analysis. Analysis of molecular data showed that the genes encoding chitinase and glucanase as the key enzymes in fungal cell wall degradation, had higher expression levels in the resistant genotype (Line 104). The transcript level of chitinase in semi-susceptible genotype (Line 67) was lower than that of the resistant genotype (Line 104) and higher than that of the susceptible cultivar. Most transcripts of chitinase gene were seen at 12 hours post inoculation in the resistant genotype (Line 104), whereas the lowest expression level was recorded at the same time in the susceptible cultivar. The expression levels of the other two genes (glucanase and peroxidase) were higher in the resistant genotype (Line 104) than those in the susceptible cultivar. Increasing in MAPK transcripts in resistant genotype (Line 104) and its depletion in susceptible cultivar confirmed MAPK role in Hypersensitive response (HR) and defense responses of barley infected with powdery mildew disease. Based on the findings of this study, it appears that the HR in the resistant genotype initiated as early as six hours post inoculation, effectively hindering the penetration and dissemination of the pathogen within the plant. Such reaction was not observed in the semi-susceptible and susceptible barley plants, possibly due to delayed in responses, allowing the pathogen ample time to penetrate and propagate within the host plant. The results of this research can be used to evaluate the resistance level of cultivars and also to evaluate the resistance in the seedling stage of promising lines.
|
|
|
|
|
|