|
|
|
|
Search published articles |
|
|
Showing 1 results for Plncpro
Razieh Khadivar, Ahmad Ismaili, Seyed Sajad Sohrabi, Hasan Torabi Podeh, Volume 9, Issue 2 (3-2023)
Abstract
Drought stress is one of the main environmental factors that affects growth and productivity of crop plants, including lentil. In the course of evolution evolution, crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged in plant in response to drought and other abiotic stresses. In the present study, after identifying lncRNAs within the expression profile of lentil, RNA-seq data and real-time PCR analyses were employed to examine the expression pattern of some of the identified lncRNAs under drought stress. Additionally, psych R package was used to generate the lncRNAs-DEGs co-expression network. A total of 3590 lncRNA sequences were identified in lentils transcriptome. Numerous lncRNAs were co-expressed with genes involved in circadian rhythm regulation, zinc ion response, photosynthetic photoreaction, and ion homeostasis. The LCUL_evgLocus_104392, LCUL_evgLocus_99066 and LCUL_evgLocus_61876 sequences were differentially expressed in response to drought stress. Examining the co-expression of these sequences with differentially expressed genes in response to drought stress, led to the identification of metabolic pathways associated with these sequences. In this study, lncRNA sequences were identified for the first time in lentil, and provided useful insights into the function of lncRNA in plant resistance to drought stress. The lncRNAs-DEGs co-expression network can lead to a better understanding of drought response mechanisms in lentil.
|
|
|
|
|
|