[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 3 results for Morphological Traits

Reza Darvishzadeh, Mir Javad Mousavi Andazghi, Amir Fayyaz Moghaddam, Hossein Abbassi Holasou, Seyyed Reza Alavi,
Volume 3, Issue 2 (3-2017)
Abstract

In order to evaluate heritability and gene action for some of the important quantitative traits in oriental tobacco, two genotypes, Basma 16-10 and SPT406 were crossed with Basma S. 31 cultivar, separately in 2009-2010. Parents with F1, F2, BC1 and BC2 generations were planted in a randomized complete block design with three replications. Traits such as plant height, leaf length, leaf width, leaf number, internnode number, stem diameter and yield per plant were recorded. The results obtained from analysis of variance indicated that generations mean squares were statistically significant for all traits expect for stem diameter. Therefore, generation mean analysis was performed for significant triats to estimate gene actions using Chi-square and scaling tests. The Chi-square of simple three-parametric model (additive-dominance model) was significant for studied crosses, indicating the presence of non allelic-interactions in the inheritance of these traits in oriental tobacco. Both additive and dominance genetic effects were significant for plant height, leaf length, leaf width, leaf number and internnode number. In addition, presence of high amount of dominance effect and dominance × dominance interactions suggests the importance of non-additive genetic effects for these traits in oriental tobacco. Therefore, selection for these traits in early generations can not be successful. However, additive genetic effects play an important role in the inheritance of yield, and then selection for this trait is hopeful in early generations during tobacco breeding process.
Mahtab Samadi Gorji, Ali Zaman Mirabadi, Kambiz Forozzan, Mostafa Haghpanah,
Volume 5, Issue 2 (3-2019)
Abstract

This experiment was conducted to evaluate genetic diversity in 72 peanut accessions (Arachis hypogaea L.), which introduced from seed bank of Australia in training and seed production research center of oilseeds company, Iran. Twelve major morphological traits recorded during 2013 growing season using a randomized complete block design with three replications. The results showed that the difference between genotypes for all traits was significant. In addition, coefficient of phenotypic variation was greater than coefficient of genotypic variation for all traits, indicating the effect of environment on recorded traits. The broad-sense heritability ranged from 80.25% (for seed width) to 99.54% (for 100 seed weight) and was 96.85% for grain yield. The highest phenotypic and genotypic coefficients of variation obtained for the pod weight, thus, it is possible to improve this trait by selection method and this trait could use as a selection index to improve grain yield. Genetic correlation indicated a high significant correlation between grain yield with grain weight and pod yield. The studied genotypes divided to four groups by cluster analysis based on Ward method.

Nasrin Akbari, Reza Darvishzadeh,
Volume 11, Issue 1 (9-2024)
Abstract

Sunflower, one of the important oilseed plants, is affected by drought stress, consequently leading to yield decreases. Direct selection for improving seed yield, as the end result of multiple traits, is often ineffective due to the significant impact of environmental conditions. For many years, indirect selection through other traits or selection indices has been proposed to improve seed yield. In the present experiment, 100 oilseed sunflower genotypes were evaluated in terms of some agro-morphological traits using a simple 10 × 10 lattice design under normal and drought stress conditions during two consecutive croping seasons. In drought stress conditions, irrigation was done after 180 mm of evaporation from class A evaporation pan, compared to 90 mm in normal irrigation conditions. Brim, Smith-Hazel, Robinson and Pesek-Baker selection indices were calculated to select genotypes under two environmental conditions. In order to evaluate and compare the efficiency of selection indices and select the best index, the genetic gain of traits (∆G), expected gain (∆H) and relative efficiency of selection index (RE) were calculated. The results of this study showed that the direct response to selection for the traits including seed oil content, days to maturity and leaf length under both environmental conditions was more favorable compared to the correlated response. However, for head and stem diameter traits, the lowest efficiency of direct selection was observed under both environmental conditions compared to other investigated traits. Considering the two criteria; the genetic gain of traits (∆G) and expected gain (∆H) under normal and drought stress conditions, the two indexes of Brim and Smith-Hazel were introduced as the best index and the genotype ENSAT-254 was introduced as the superior genotype. The selected ENSAT-254 genotype can be considered in developing hybrid cultivars for cultivation under drought stress conditions, provided it is validated at the molecular level by analyzing the expression of genes related to water deficit stress tolerance.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 29 queries by YEKTAWEB 4657