[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 2 results for Indirect Selection

Abdul Karim Tahmasebi, Reza Darvishzadeh, Amir Fayaz Moghaddam, Esmaeil Gholinezhad, Hossein Abdi,
Volume 8, Issue 2 (3-2022)
Abstract

The selection of genotypes based on multiple traits is a fundamental issue and an important part of the process of plant breeding. In the present study, the efficiency of selection indices based on phenological, morphological and physiological traits was studied to improve sesame grain yield. The evaluation of 25 sesame populations was realized in a completely randomized design with 10 replications under Urmia conditions in 2017.The results showed that phenotypic and genotypic correlations between grain yield and No. of capsules per plant, No. of grains per capsule, No. of branches, leaf temperature, leaf index and biological weight were positive and significant. By regression and path analysis, the No. of capsules and No. of branches were identified as the variables of the first-order cause and biological weight, harvest index, leaf index, plant height and chlorophyll as the second-order cause variables, among which only plant height had a direct negative effect. In order to obtain selection indices, two optimal and basic methods and ten different vectors of economic values of traits were used. The vectors were based on the analysis of correlation, regression, path and broad sense heritability. The third and fourth indices, in which the first-order cause entered the model, showed high relative efficiency and in terms of these two indices, and the sesame populations with code number of 12, 17, 18 and 19 populations were identified as the most desirable populations. Finally, it is suggested that the efficiency of these selection indices be evaluated in the field

Maryam Ebrahimi, Reza Darvishzadeh, Amir Fayaz Moghaddam,
Volume 10, Issue 1 (9-2023)
Abstract

Protection of food security is one of the basic priorities of any country, which is achieved through the development and introduction of new, high-yielding and stress-resistant crop varieties. Considering the wide range of usage; human nutrition, livestock and poultry nutrition as well as use in industrial products production, maize is of special importance in agricultural development programs. To improve a trait with complex behavior and low heritability, indirect selection by other traits or a suitable index developed based on several traits can be used. In this research, 86 maize genotypes were cultivated in the form of randomized complete block design with three replications in the field in the Faculty of Agriculture, Urmia University under two normal and salt stress conditions. The measurement of the traits was done from the tassel appearance to kernel physiological maturity. In order to speed up genotype selection and increase the acuracy of selecting high yielding genotypes, four selection indices including Smith- Hazel, Pasek- Baker, Brim and Robinson were used and calculated. The results of present study revealed that selection based on the Smith- Hazel index with the highest selection efficiency (∆H) will increase the grain yield in normal and grain yield and plant height in salt stress conditions. This index, with its high correlation with the breeding value is introduced as a superior index. Based on this index, R59 and 6*/88 genotypes were introduced as the superior genotypes under normal and salt stress conditions, respectively. Nonetheless, these genotypes were recognized as the best genotypes considering the results of all other investigated indices. Identifying and introducing genotypes tolerant to salinity stress is of particular importance due to the expansion of saline lands and the limitation of access to water suitable for irrigation. Based on the above results, 6*/88 genotype is recommended for the development of promising hybrids for cultivation in areas with water or saline soil.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.05 seconds with 28 queries by YEKTAWEB 4657