[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 10 results for Index

Seyedeh Zahra Hosseini, Ahmad Ismaili, Seyed Sajad Sohrabi,
Volume 5, Issue 2 (3-2019)
Abstract

Drought is a threaded factor in the world production and application of breeding methods could improve the tolerant and adapted cultivators under drought stress condition. In order to evaluate and determine the stress tolerance indices and identifion of tolerant genotypes to drought stress, 15 safflower genotypes were evaluated in a randomized complete block design with three replications in two conditions (stress and non-stress). Analysis of variance showed significant differences among genotypes for all traits, stress tolerance indices and yield in both conditions. Significant positive correlation was found between grain yield in the stress condition with indicators stress tolerance index, harmonic mean and geometric mean productivity indicating that these indices are suitable criteria for screening drought tolerant genotypes. No significant correlation was observed between Ys with tolerance index and mean productivity, hence they can be discarded as the desirable markers for identifying drought tolerant genotypes. In conclusion, using a graphical approach of three dimensional scatter plots, Principal component analysis and biplot analysis, two tolerant genotype (Syrian and Kino-76) were selected for future programs in stress and non-stress condition.
 
Sara Motallebinia, Omid Sofalian, Ali Asghari, Ali Rasoulzadeh, Bahram Fathi,
Volume 6, Issue 1 (9-2019)
Abstract

In the present study, in order to evaluate the drought tolerance indices and their relationship with ISSR markers, 12 rapeseed genotypes were studied using a factorial experiment based on completely randomized block design under the three irrigation treatments (control and irrigation after drainage of 60 and 85% moisture content) in the greenhouse of Mohaghegh Ardabili University, Iran. Drought tolerance genotypes were evaluated by quantitative indices including MP, GMP, SSI, STI and TOL. Cultivars in all five of indices at two levels of stress exhibited significant differences. Regarding the results of the mean comparison at both levels of stress, SLMO46 was identified as the most resistant cultivar with the highest amount of MP and STI, and Karun was the most sensitive one with the highest amount of SSI index. According to the results of factor analysis, in the first level of stress, Sarigol32 and Karun were sensitive, and in the second level of stress, Talaye and Sarigol32 were sensitive as well. SLMO46 was known to be resistant to stress in both levels of stress. Phenotypic correlation of grain yield under stress and non-stress conditions was investigated in two levels of stress with 5 drought indices. In first level of stress condition, grain yield had a positive and significant correlation with mean productivity, geometric mean of productivity and stress tolerance index. In the second level of stress condition, the same correlation was observed with the difference that there was no significant correlation between drought tolerance and tolerance indices. Canonical correlation analysis was performed between drought indices and molecular markers. Five ISSR primers (5, 9, 11, 14 and 19) with the highest polymorphic percentages were used for calculation using the first factor coefficients. ISSR-PCR was used to identify some of the molecular markers associated with drought tolerance indices. A total of 106 clear and score-able loci were amplified by 18 ISSR primers, of which 60 bands (56.6%) were polymorphic. Finally, according to the results, these markers can be used in rapeseed breeding programs for drought tolerance.

Leila Khazaie, Reza Shirzadian Khoramabad, Ali-Akbar Ebadi, Ali Moumeni,
Volume 7, Issue 1 (9-2020)
Abstract

Mutagenesis has been one of the important sources of genetic diversity and Plant mutants can be important bio-resources for crop breeding and functional genomics studies. Breeding conventional methods for generating of genetic variability are of low efficiency. We showed that treatment of seeds of rice(Hashemi cultivar) with 0.8% EMS for 8 h caused visible phenotypic variations on M2 rice mutant genotypes including flowering date, plant height, number of fertile tiller, panicle length, number of filled and unfilled grains per panicle, grain width and length, 100 grain weight and grain yield. The phenotypic variation coefficients of most traits found to be more than the genetic variation coefficients. The number of filled grains per panicle and seed length had the highest and lowest general heritability, respectivly. The seed yield had also high heritability. Analysis of correlation between different characteristics in the mutant genotypes showed that the number of fertile tillers and the number of unfilled grains per panicle had positive correlation with yield. Also, grain yield exhibited positive and significant correlation with panicle length, number of tillers and number of filled grains at genotypic level. In multiple regression analysis by stepwise method, number of tillers, number of filled grains per panicle, 100-grain weight, and grain width entered into the model, respectively, that explained 96 percent of grain yield variations. Results of grain yield and its components path coefficient analysis showed that the number of tiller had the highest direct effect (0.77) through than other traits on grain yield and, therefore it can be considered as major trait in grain yield improvement in rice. Also, based on results of this research and by using optimal selection index, mutant genotypes EM 18-17-5 and EM 15-14-1 were selected as superior mutant genotypes. This mutant population is expected to be serves as a genetical resource for understanding rice biology as well as for use in genetic improvement of quantitative traits.

Fatemeh Darvishnia, Mohammadhadi Pahlevani, Khalil Zaynali Nezhad, Khosro Azizi, Saied Bagherikia,
Volume 7, Issue 1 (9-2020)
Abstract

In order to determine the most effective indices for quantifying drought tolerance and identify genotypes that are tolerant to water stress in bread wheat, 50 bread wheat genotypes were compared in a randomized complete block design with three replications under both the non-stress dry farming with two complementary irrigation and the water stress dry farming conditions in Khorramabad, Iran. Analysis of variance showed that there was a significant difference among the genotypes in terms of all of the traits except the number of spike per area. In this study, eight indices including: Stress Tolerance Index (STI), Geometric Mean Productivity (GMP), Mean Productivity (MP), Yield Index (YI), Harmonic Mean (HM), Yield Stability Index (YSI), Stress Susceptibility Index (SSI), and Tolerance index (TOL) were calculated by using of seed yield of the genotypes under both conditions. Indices that selection based on them will improve the yield in both conditions, are considered as suitable index. STI, GMP, MP and HM were introduced as suitable index for drought resistance selection. Genotypes Shiroodi and S-90-5 were determined as the most appropriate based on 3D plot. Based on positive correlation between water stress resistance indices and yield under stress and non-stress environments, STI and GMP were the best indices. By using the Biplot method, Shiroodi, S-90-5 and Oroum genotypes were considered as high yielding potential genotypes under the both conditions. According to the results of cluster analysis, genotypes were classified into three groups based on drought tolerance indices. Graphical analysis of genotypes also showed that genotypes Shiroodi and S-90-5 were more profitable than others under both drought stress and non-drought stress conditions. These genotypes could also be used as parents caring desirable genes in the crossing programs and selection of tolerate genotypes.

Bahram Alizadeh, Abbas Rezaizad, Mohammad Yazdandoost Hamedani, Gholamhossein Shiresmaeili, Farshad Nasserghadimi, Hamid Reza Khademhamzeh,
Volume 7, Issue 2 (3-2021)
Abstract

The genotype × environment interaction is a major challenge in the study of quantitative characters because it reduces yield stability in different environments and also it complicates the interpretation of genetic experiments and makes predictions difficult. In this regard to analysis of genotype × environment interaction and determine the yield stability of winter rapeseed genotypes in cold and mild cold regions of the country, 9 lines and 4 cultivars were evaluated in a randomized complete block design with three replications in six experimental field stations (Isfahan, Hamedan, Karaj, Kermanshah, Khoy and Zarghan) during 2015–2017 growing seasons. Results of combined analysis of variance indicated that the effects of environments, genotypes and genotype × environment interaction were significant, suggesting that the genotypes responded differently in the studied environment conditions. So, there was the possibility of stability analysis. The Nafis cultivar and BAL-92-1 line with seed yields 4086 and 3829 kg.h-1, respectively, were better than overall mean and had lower ranks and rank variance than others. According to the results of stability analysis using Eberhart and Russel method, the BAL-92-1 line with higher seed yield than overall mean and regression coefficient equal one (bi=1) was identified as the genotype with high general stability for all regions. Based on the simultaneous selection method for yield and stability (YSi), the lines of HW-92-1, BAL-92-1, HW-92-1 and Nafis cultivar with the lowest values were stable, whereas lines BAL-92-4, HW-92-2, HW-92-3 and Ahmadi cultivar with highest values were unstable. Also, based on the SIIG index, the lines of HW-92-1, BAL-92-1, BAL-92-6, BAL-92-11 and Nafis cultivar with having high SIIG value as well as higher seed yield that total average were recognized as superior genotypes from the point of stability and seed yield. Finally, BAL-92-1 line with high yield and broad adaptability was selected as superior line for supplementary studies to introduce the new commercial cultivar in cold and mild cold regions of Iran.

Peyman Sharifi, Abouzar Abbasian, Ali Mohaddesi,
Volume 7, Issue 2 (3-2021)
Abstract

Additive main effect and multiplicative interaction (AMMI) and best linear unbiased prediction (BLUP) are two methods for analyzing multi-environment trials (MET). In this study, seven selected rice lines were evaluated along with two check varieties based on randomized complete block design in Tonekabon, Amol and Sari (Iran) in three growing seasons of 2011-14. To quantify the genotypic stability, the best linear unbiased predictions of the genotype by environment interactions (GEI) were estimated, and singular value decomposition (SVD), which is the basis of AMMI analysis, was performed on the resulting matrix. The likelihood ratio test (LRT) showed that the effect of GEI was significant on grain yield, number of tillers, thousand grains weight and panicle length. Therefore, due to the significant interaction of genotype by environment, BLUP analysis can be performed on this data. The biplot of first principal component (PC1) of the environment versus nominal yield showed that genotypes 7 ([IR 67015-22-6-2-(A37632) × (Amol3 × Ramzanalitarom)]39), 6 (IR67015-22-6-2-(A37632) × (Amol3 × Ramzanalitarom)]126) and 2 ([IR64669-153-2-3 - (A8948) × (4Surinam Deylamani)]2), due to the lowest scores of the PC1, had a small share in the GEI and had more grain yield stability. The biplot of grain yield versus WAASB, placed genotypes in four regions, so that genotypes in the fourth region, including genotypes 6, 7, 8 (Line 843, check variety), and 9 (Shirodi, check variety), were due to large value of response variable (high grain yield) and high stability (low values of WAASB) were very productive and had extensive stability. Identification of genotypes with weighted average of WAASB and response variable (WAASBY) criteria showed that genotypes 6 and 7 were high yields and stable. Based on the multi-trait stability index (MTSI), G6 was also selected as the best genotype in terms of grain yield, evaluated traits and stability of each trait. Totally, genotype 6 was stable and superior based on the results of all methods.

Maryam Rasoulzadeh Aghdam, Reza Darvishzadeh, Ebrahim Sepehr, Hadi Alipour,
Volume 8, Issue 1 (8-2021)
Abstract

Nutrient deficiencies are important abiotic stresses that can affect plant growth and development. In this study, 76 sunflower pour lines collected from different regions of the world were evaluated in pot using some physiological traits with combined analysis of completely randomized design with three replications under optimal and phosphorus deficit conditions. Phosphorus deficiency decreased the means of all studied traits except canopy temperature. Oilseed sunflower lines were grouped into five and four clusters in each one of optimum and phosphorus deficient conditions, respectively. However, in both optimum and phosphorus deficient conditions, lines 19, 21, 27, 44 and 71 were classified into desirable cluster with high yield and yield components. Multivariate tolerance index (MFVD) for each genotype was calculated using the ratio and productivity matrices of the studied traits under optimal and phosphorus deficit conditions using principal component analysis on the resulting matrices. Based on the resulting biplot, lines 71, 74, 65, 21, 39, 7, 18 and 11 were introduced as desirable and phosphorus deficit tolerant lines.

Rahmatollah Karimizadeh, Tahmasp Hosseinpour, Peyman Sharifi, Jabar Alt Jafarby, Kamal Shahbazi, Kavoos Keshavarzi,
Volume 8, Issue 1 (8-2021)
Abstract

Durum wheat (Triticum turgidum L.), like most other crops, is affected by various stresses. Therefore, cultivars that, in addition to the ability to produce higher yields, can maintain their yield potential in different years and locations are considered superior cultivars. In order to obtain high-yielding and stable genotypes of durum wheat, 16 lines with two control cultivars Dehdasht and Seymareh were evaluated in four locations of Gachsaran, Gonbad, Khorramabad and Moghan based on randomized complete block design with four replications in three cropping seasons (2013-2016). Combined analysis of variance indicated a significant effect of genotype, environment and genotype by environment interaction. Genotypes G6 and G18 had the highest and lowest grain yield, respectively. Based on parametric methods, genotypes G3, G5, G15, G13 and G16 and based on non-parametric methods, genotypes G1, G3, G4, G5, G15 and G3 were the most stable genotypes. The most stable genotypes based on the total Kang sum-rank were genotypes G15, G5, G6 and G1. The Selection index of ideal genotype (SIIG) was used to integrate all indices into one index, based on which genotypes G5 and G15 were the superior genotypes with the highest SIIG index and grain yield. Based on all indices, genotypes G5 and G15 were the most stable genotype in terms of grain yield and can be used in cultivar introduction processes.

Nasrin Razmi, Ebrahim Hezarjaribi, Abbasali Andarkhor,
Volume 9, Issue 2 (3-2023)
Abstract

Soybean is the promising oilseed in the face of protein and oil shortage. In this study 16 advanced soybean genotypes, in terms of seed yield and yield components were evaluated using multivariate statistical methods. This experiment was carried out in the form of randomized complete block design (RCBD) in the research farm of Ardabil Agricultural and Natural Resources Research Center (Moghan) for two consecutive years (2017-2018). Combined analysis of variance emphasized the statistically significant differences for seed yield, yield components and growth period among these soybean genotypes. Based on the mean comparison results, G1, G5 and G11 genotypes had the highest grain yield, longest growth period was observed in G1, G16 and G6 genotypes and highest number of seeds per m2 was belonged to G1, G16 and G9 genotypes. The broad sense heritability for plant height, seed yield and number seed in m2 were 0.92.07, 75.31 and 79.25 percentage, respectively. Also, the results showed that there was a positive and significant correlation between seed yield and leaf area of per plant, growth period, number of seeds per m2 and number of pods per plant. Genotypes were classified into four distinct groups in cluster analysis and the Ward method. The results of principal component analysis and biplot confirmed by the clustering results, too.G1, G2, G5 and G11 genotypes belong to the first group from cluster analysis with higher seed yield and number of seed per m2, and these genotypes are recommended in future breeding programs.

Hossein Abdi, Hadi Alipour, Iraj Bernousi, Jafar Jafarzadeh,
Volume 10, Issue 1 (9-2023)
Abstract

Evaluating the population structure is essential for understanding diversity patterns, choosing proper parents for crossing, accurate identification of genomic regions controlling traits, and evolutionary and kinship relationship studies. In this research, the genetic structure of a wheat population was studied in a panel consisting of 383 Iranian wheat genotypes of hexaploid (cultivars and landraces) and tetraploid species based on distance-based methods (principal component analysis and discriminant analysis of principal component). For this purpose, 16270 single nucleotide polymorphism (SNP) markers obtained by the GBS technique were used. According to the results, almost a quarter of the total variance was belonged to the diversity between populations, and the Fst coefficient between cultivars and landraces was equal to 0.15. In contrast, the above coefficient between tetraploid samples and hexaploid landraces was high and equal to 0.44. Genome D had the lowest value of Fst index and chromosome 4B showed the highest Fst coefficient, and other genetic diversity indices. Although the PCA biplot distinguished hexaploid wheat cultivars from landraces, it was unable to distinctly separate tetraploid genotypes from other genotypes. Accurate evaluation of the population structure with the DAPC method was able to identify and separate the predetermined successfully groups, suggesting that the DAPC approach maximizes the differentiation between groups and minimizes the changes within the group. Partial admixture between cultivars and landraces of hexaploid wheat can be related to gene exchange between these two groups or perhaps their wrong labeling at the time of collection. In general, the results of this study provided valuable information about the genetic differentiation of Iranian tetraploid and hexaploid wheat, which can be used in future wheat breeding programs. Further, protecting these genotypes in gene banks is necessary for different strategies.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 36 queries by YEKTAWEB 4657