|
|
|
Search published articles |
|
|
Showing 3 results for Grain Yield
Amir Mohammad Mahdavi, Nadali Babaeian Jelodar, Ezatollah Farshadfar, Nadali Bagheri, Volume 7, Issue 1 (9-2020)
Abstract
In order to determine yield stability of 23 bread wheat genotypes and two commercial cultivars as check, an experiment was conducted based on a randomized complete block design with three replications in the experimental field of faculty of Agriculture, Razi University Kermanshah (Iran), during three cropping seasons (2015-2018). The results of combined ANOVA showed that the effect of environment, genotype and genotype × environment interactions on grain yield were significant (P<0.01). Stability was evaluated using environmental variance statistics, coefficient of variation, Wrick´s ecovalence, Shukla’s stability variance, Regression slope, deviation from regression slope, Plaisted and Peterson method and AMMI model. Variance analysis of additive main effects and multiplicative (AMMI) showed that three IPCAs were significant at 1% probability level. The first three principal components justified a round 85.7% of the sum of square of the interaction. Also, AMMI stability value (ASV) was used for simultaneously using information obtained from two significant components of AMMI. According to ASV index, genotypes Pishgam, Wc-4958 and Pishtaaz had the lowest ASV value and were known as the most stable genotypes. Genotypes Wc-4987, Wc-47615, Wc-47399 and Wc-47638 had the highest ASV value and distance from the center of Bi-plot. Therefore, Pishtaaz is one of the most stable genotypes due to having the first rank in terms of studied parameters as well as proper bakery properties and desirable drought resistance. In general, regarding to the climate change in the country, especially in the rainfed conditions and based on the above statistics and the biplots derived from AMMI analysis, the Wc-4958 line, with pishtaaz and Pishgam cultivars as stable and adaptable genotypes, are suggested to rainfed conditions on the studied area.
Ali Barzgari, Saeed Malekzade Shafaroudi, Saeed Khavari Khorasani, Farajollah Shahriari Ahmadi, Volume 8, Issue 2 (3-2022)
Abstract
In breeding programs determination of gene effects and general and specific combining ability for screening of test crosses is necessary. In order to estimate the genetic variance components and the general and specific combining ability of sweet corn lines, an experiment was conducted using 8 sweet corn S6 inbred lines (including 4 maternal and 4 paternal lines) by line × tester mating design in 2019, at the Agricultural and Natural Resources Research and Education Center of Khorasan Razavi Province, Mashhad, Iran. The obtained test cross hybrids were evaluated in a randomized complete block design with 3 replications in 2020. The results of line, tester and line × tester analysis for most of measured traits showed significant differences (p < 0.05). The σ2gca/σ2sca ratio for grain yield was equal to 0.1, showed that while both additive and dominance effects play a role in controlling this trait, but dominance effect was higher. The results for general combining ability of L3 and T1 lines showed positive and significant GCA effect for grain yield. Also, the specific combining ability of grain yield showed that T4 × L2, T1 × L3 and T3 × L1 had the highest SCA rate. In this study, in terms of grain yield, T1 × L3, T4 × L2 and T1 × L4 with 33.96, 30.47 and 27.85 tons per hectare had the highest green ear yield, respectively. These combinations can be as the hybrids with high yield potential in advanced breeding programs for release of new sweet corn varieties.
Davood Kiani, Gholamreza Ghodrati, Sadollah Mansouri, Volume 9, Issue 1 (9-2022)
Abstract
Sesame is an important crop plant for harsh environmental conditions because it is relatively resistance to drought stress. Evaluation of different genotypes in different climate condition plays a fundamental role in selection of the best genotypes before the commercial release of a variety and helping in identify plant traits that should be monitored during breeding experiments. In the present study, 10 promising lines obtained from the preliminary yield test were investigated to evaluate the yield compatibility along with 6 local cultivars in a randomized complete block design experiment with three replications in two cropping years (2018 and 2019) in Dashtestan climate condition in Bushehr province. During the growing season, phenology traits, grain yield components and grain yield were measured. Based on the results of ANOVA, statistically significant difference was observed between different genotypes for plant height, height of the first sub branch, height of the first capsule, number of sub branches, number of capsules per plant, length of capsule, length of capsule bearing zone, number of seeds in capsule and grain yield. Based on the mean comparison and biplot analysis the genotype 12 (Local Dashtestan), 2 (SES97-103), 7 (SES97-110) and 15 (Local Jiroft), were identified as superior genotypes for grain yield. Genotype 5 (SES97-105) and genotypes 14 (SES97-124) with 104.5 days and 4 (Local Darab1) with 111 showed the highest and lowest number of days to maturity, respectively. First capsule height showed the highest positive and significant phenotype (0.56) and genetic (0.78) correlation with grain yield. Days to the end of flowering and days to physiological maturity traits showed a negative genetic correlation with yield. Cluster analysis separated 16 sesame genotypes into four separate groups. Based on regression analysis, the height of the first capsule was identified as the most sensitive trait in predicting the yield of sesame genotypes in Dashtestan region in Bushehr province, which seems it can be considered during breeding programs.
|
|