[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 12 results for Gene Expression

Mohammad Majdi, Ghasem Karimzade, Mohammad Ali Malboobi,
Volume 1, Issue 2 (2-2015)
Abstract

Feverfew (Tanacetum partheniumL. Schulz Bip.) is a medicinal herb belonging to the Asteraceae which recently raised researcher’s attention due to its medicinal value and pharmacological activities, especially as a migraine prophylaxis agent and also for treatment of cancer. Parthenolide has a sesquiterpene lactone structure which is most likely synthesized through the mevalonic acid (MVA) pathway. Recently, it has been shown that there is cross a talk between the MVA and the MEP pathways through IDP (Iosopentenyl diphosphate) exchange as a precursor for the biosynthesis of different terpenes hence, parthenolide biosynthesis could be affected by the MEP pathway as well. In the present work, the relative gene expression of two key genes of the MVA pathway, including 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) and germacrene A synthase (GAS) and two key genes of the MEP pathway including 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and hydroxy-2-methyl-2-(E)-butenyl4-diphosphate reductase (HDR) were examined in leaves derived from the vegetative or generative phases, also in flowers using real time PCR. The results of our study showed that expression of these genes depend on the growth stage and genotype. Moreover, in which in the flowers and leaves derived from vegetative phase in different genotypes only the TpGAS gene expression showed a significant difference, while in the leaves derived of generative phase the relative gene expression showed a significant difference for TpHMGR, TpGAS and TpDXR.
Saeed Bagherikia, Mohammadhadi Pahlevani, Ahad Yamchi, Khalil Zenalinezhad, Ali Mostafaie,
Volume 4, Issue 1 (9-2017)
Abstract

Under drought stress conditions, as one of the most important limiting factors of grain yield in wheat at arid and semi-arid regions, the remobilization of assimilates gain would be more valuable to grain filling. There are a few reports on the importance of remobilization of the root during the grain filling period under drought stress conditions. An advanced mutant line of bread wheat (T-65-7-1) along with its wild type (cv. Tabasi), were planted at two moisture conditions (normal and 30-40% of field capacity) as a factorial experiment based on a completely randomized design with three replications. Sampling for gene expression analysis was conducted from the root in two stages (7 and 21 days after anthesis). In these genotypes, fructan remobilization, efficiency of fructan remobilization, and relative expression of genes involved in the synthesis and hydrolysis of fructan during the grain filling period, in root, were studied under terminal drought stress. The results showed that the stored fructan in the root participated in the assimilate remobilization. Higher fructan remobilization through root to grain in mutant line under drought stress conditions was due to over-expression of genes involved in the synthesis of fructan (1-SST and 6-SFT) at 7-days after anthesis and in hydrolysis of fructan (6-FEH) at 21-days after anthesis, compared to wild type. Drought stress did not cause a significant change in gene expression of 1-FFT and 1-FEH genes in the root of both genotypes, which confirms the only β (2,6) linkages as predominant form of fructan has affected under drought stress conditions. In wheat breeding programs, 1-SST, 6-SFT and 6-FEH can be used as molecular markers for selecting genotypes with high fructan content and more remobilization.
Mitra Khademi, Farhad Nazarian-Firouzabadi,
Volume 6, Issue 1 (9-2019)
Abstract

Recently, new molecular breeding and genetic engineering approaches have emerged to overcome the limitations of conventional breeding methods in generating disease-resistance transgenic plants. The use of antimicrobial peptides (AMPs) to produce transgenic plants resistant to a wide range of plant pathogens has achieved great success. Among huge number of AMPs, Dermaseptin B1 (DrsB1), an antimicrobial cationic 31 amino acids peptide, exhibits significant antimicrobial activities towards a wide range of pathogens. In order to increase the antimicrobial efficacy of DrsB1, the DrsB1 encoding DNA sequence was either fused to the N- or C-terminus of the sequence encoding chitin-binding domain (CBD) of Avr4 gene from Cladosporium fulvum and constructs (CBD-DrsB1 and DrsB1-CBD) were used for tobacco leaf disk Agrobacterium-mediated transformation. Polymerase chain reaction (PCR), semi-quantitative RT-PCR and SDS-PAGE analysis indicated the integration of transgenes in tobacco genome and expression of the recombinant genes in transgenic plants, respectively. The antimicrobial activity of extracted recombinant peptides were assessed against a number of plant and human pathogens. Both recombinant peptides had statistically significant (P<0.01) inhibitory effects on the growth and development of fungi pathogens. Also, CFU test result showed that extracted recombinant peptides from transgenic plants, had a relatively high inhibitory effect on plant pathogens. The CBD-DrsB1 recombinant peptide demonstrated a higher antibacterial activity, whereas the DrsB1-CBD recombinant peptide performed a greater antifungal activity. In addition, the expression of DrsB1-CBD recombinant peptide significantly inhibited R.solani fungal infection in comparison with Pythium sp. interestingly, fungi with a higher amount of cell wall chitin were more vulnerable to recombinant peptides, suggesting recombinant peptides present a higher affinity for cell wall chitin. Owing to the high antimicrobial activity and novelty of recombinant peptides, this strategy for the first time, could be used to generate transgenic crop plants resistant to devastating plant pathogens.

Mehrnoosh Rafeie, Mohammad Reza Amerian, Behzad Sorkhi, Parviz Heidari, Hamid Reza Asghari,
Volume 6, Issue 2 (3-2020)
Abstract

To investigate the effect of exogenous brassinosteroid application on grain yield, catalase, chlorophyll content, membrane mtability index and gene expression of some genes involving in brassinosteroid signaling pathway (BES1 and BRI1) under drought stress, a split-split plot on randomized complete block design with three replications was conducted at the experimental field of Seed and Plant Improvement Institute, Karaj, Iran in 2019. The main factor was two irrigation treatments (normal irrigation and water holding after 50% flowering stage), the subplots were four concentrations of brassinosteroid (0, 0.25, 0.625 and 1 mg/l) and seven genotypes (Mehregan, Paris, 2858, 3505, 3737, 4228 and 4056) were considered as sub-sub plots. Samples were taken at 30 days after 50% flowering stage (zadoks 89) from flag leaves. The results showed that drought stress significantly reduced grain yield, chlorophyll content, membrane stability index and increased catalase in all genotypes. Genotype 4228 was identified as the most tolerant genotype among unknown wheat genotypes based on grian yield, chlorophyll content, membrane stability index and catalase. Also, the result revealed that applied epibrassinolide could reduce the destructive effects of drought stress on wheat thus grain yield was enhanced under drought stress in all genotypes by increasing the aforementioned traits. Forethermore, grain yield was increased by rising the epibrasinolide concentration. Gene expression pattern of TaBES1 and TaBRI1 using real-time PCR showed that although brassinosteroid enhances drought tolerance in wheat but its signaling pathway is different from the BRI1 signaling pathway.

Seyed Sajad Sohrabi, Seyyed Mohsen Sohrabi, Seyed Karim Mousavi, Mohsen Mohammadi,
Volume 7, Issue 1 (9-2020)
Abstract

Saffron (Crocus sativus L.) is the most valuable and expensive spice in the world. The stigmas of saffron are the source of valuable apocarotenoids such as crocin, picrocrocin and safranal. transcriptomic and expression studies of genes are important steps in investigating of secondary metabolites in plants. One of the important prerequisites for such studies is the existence of reliable and stable reference genes to normalize the expression of other genes. In the present study, eight reference genes were identified and isolated using transcriptome of saffron and their expression stability was evaluated by nonparametric statistics and methods. The results of amplification and sequencing showed accurate identification of eight reference genes Actin, EF1, GAPDH, H3, MDH, TBP, UBC and UBQ. The expression stability evaluation revealed that MDH and UBQ genes had the highest stability among different saffron tissues and TBP had the lowest stability among them. In this study, for first time, eight reference genes were isolated from saffron and their expression stability was evaluated. The reference genes identified in the present study can be used as stable genes to normalize gene expression in transcriptomic and expression studies of saffron plant.  

Seyede Yalda Raeesi Sadati, Sodabeh Jahanbakhsh Godehkahriz, Ali Ebadi, Mohammad Sedghi,
Volume 7, Issue 2 (3-2021)
Abstract

Under drought stress condition, the signaling system induces expression of certain genes to counteract the deleterious effects of environmental stress. Among the essential micronutrients for plant growth and development, zinc has an important role in many plant metabolic processes including gene expression and stress tolerance. In order to investigate the effect of drought stress and ZnO on relative expression pattern of some genes involved in abiotic stresses (including WRKY1, HMA2 and ZIP1 genes) in wheat cultivars, a factorial experimental was conducted in pot condition based on a completely randomized design with three replications. In this experiment, the first factor was three levels of drought stress (35, 60 and 85% of field capacity), the second factor was three wheat cultivars (including Heidari, Meihan and Sysons), and the third factor was three levels of ZnO (0, 0.5 and 1 g/l-1). According to the results, with increasing the level of drought stress, the relative expression of WRKY1 and ZIP1 genes in drought tolerant cultivar (Meihan), and also with increasing nanoparticle concentration over stress time, the expression of ZIP1 gene in drought sensitive cultivar (Sysons) increased. The highest relative expression of HMA2 gene was observed in Heidari cultivar under mild drought stress. Generally, the expression of all three genes studied in tolerant cultivar (Meihan) increased under drought stress. Increasing the expression level of HMA2 and ZIP1 genes could be related to the transfer of zinc to consuming tissues and also, to increase the consumption of zinc in current metabolism of plant, which is important in tolerance of wheat to drought stress.

Mohaddaseh Gholami Farahabadi, Gholam Ali Ranjbar, Ali Dehestani-Kalagar, Nadali Bagheri,
Volume 8, Issue 1 (8-2021)
Abstract

Bread’s quality depends on wheat flours quality and quantity and for the goal to be achieved, the usage of suitable wheat varieties should be considered. Present study focuses on analyzing doubled-haploid lines of wheat’s bread backing quality and the relationship between qualitative traits and glutenins reservoir proteins. In current work, traits related to bread backing quality of 30 doubled-haploid lines of wheat including their parents and two control varieties (Ehsan and Morvarid) were evaluated. SDS-PAGE test was conducted to identify total amount of protein and the relationship between seeds reservoir proteins and qualitative traits, afterward, a test was conducted to evaluate expression of genes involved in bread backing quality. Results showed that there are significant differences on evaluated traits among all wheat’s genotypes. The highest volume of Zeleny sediment were related to DH-143 and DH-159 (34 and 31 ml, respectively), the highest amount of wet gluten were attributed to DH-159 and DH-143 (77.8 and 74.85 gr, respectively), the highest amount of dry gluten were attributed to DH-159 and DH-143 (26.21 and 25.11 gr, respectively), the highest amount of water absorption percentage were attributed to DH-159 and DH-143 (51.59 and 49.74%, respectively), and the highest percentage of protein content were attributed to DH-143 and DH-159 lines (with the amount of 18.03 and 17.72% respectively). Analyzing of bread backing quality traits indicated that DH-143 and DH-159 were better than the other genotypes. SDS-PAGE test results pointed that the highest amount of seed’s protein is attributed to DH-159 and DH-143 (28.23 and 26.63 µ/gr, respectively). Based on gene expression analysis (using real-time PCR), it was indicated that lines DH-143 and DH-159 had a higher level of expressed than the control treatments for HMW-X, HMW-Y and PDIL genes. Therefore, lines DH-143 and DH-159 could be used in breeding program for optimizing bread backing quality.

Reza Mir Derikvand, Seyede Sajad Sohrabi, Seyyed Mohsen Sohrabi, Kamran Samiei,
Volume 8, Issue 2 (3-2022)
Abstract


Shahnoush Nayeri, Bahram Baghban Kohnehrouz,
Volume 8, Issue 2 (3-2022)
Abstract

Black poplar (Populus× euramericana Dode Guinier) is an industrially important tree with broad applications in wood and paper, biofuel and cellulose-based industries as well as plant breeding programs and soil phytoremediation approaches. Here, we have focused on development of direct shoot regeneration and Agrobacterium-mediated transformation protocols using the in vitro internodal stem tissue from hybrid black poplar. To obtain efficient plant regeneration, the internodal stem explant was cultured on SIM and RIM medium containing different concentrations of BAP × IBA and IBA × NAA, respectively. The crucial factors involved in genetic transformation have been evaluated to achieve Agrobacterium-mediated transformation protocol. We achieved fast and highly potential shoot regeneration from the explants cultured on SIM containing BAP 0.5mg/L and IBA 0.05mg/L with 28.57 shoots per explant. The normal roots developed from the plantlets cultured on RIM containing IBA 0.1mg/L and NAA 0.05mg/L and 100% of the regenerated plants were hardened and transferred to the greenhouse condition. Our results indicated that 0.5 µM Basta® could provide a stringent selection for the inhibition of non-transformed cells. We also obtained the highest transformation efficiency of 93.33% through preculturing the explants for 6 days and dipping into IM medium containing A. tumefaciens strain LBA4404 (OD600 = 0.6) and 100 µM AS for 10 min. The Southern blotting analysis, RT-PCR and GUS histochemical analysis were confirmed the stable single or two-copies gus transgenesis in the genomic DNA and its expression in the selected T0 generation plants. The findings indicate that these protocols could be used for genetic engineering approaches in hybrid black poplar.

Sodabeh Jahanbakhsh Godehkahriz, Fatemah Jalali Shahko, Seyedeh Yalda Raisi Sadati,
Volume 9, Issue 2 (3-2023)
Abstract

The various medicinal functions of Yarrow have made it an important medicinal plant in medicine. Also, yarrow is a rich source of antioxidants and flavonoids that protect plants from the harmful effects of active oxygen species. The aim of this study was to investigate the effect of salicylic acid treatment on the expression pattern of two genes (aox2 and pal2) involved in the production of antioxidants and flavonoids in Yarrow plant. For this purpose, a factorial experiment was conducted in a completely randomized design including salicylic acid at two levels (0 and 50 mM) as the first factor and sampling time with two levels (24 and 48 hours) as the second factor in the greenhouse of the Faculty of Agriculture. First, the yarrow plant was subjected to hormonal treatment in Johnson's hydroponic environment, and 24 and 48 hours after the treatment, leaf tissue sampling was done. The results of qRT-PCR showed that salicylic acid stimulation significantly decreased the expression of two genes in the path of producing antioxidants in yarrow. The lowest relative expression of studied genes occurred 48 hours after treatment with salicylic acid. In general, the use of salicylic acid triggers molecular processes that result in the plant responding by changing the expression level of genes encoding antioxidants and flavonoids; therefore, it is suggested to use other stimulants such as jasmonic acid to investigate the expression of genes encoding antioxidants and flavonoids in future researches.

Saeid Navabpour, Horeyeh Najafi,
Volume 9, Issue 2 (3-2023)
Abstract

Environmental stress is one of the main factors that reduce the growth and performance of crops and threatening human food security. This study was conducted in order to investigate the effect of drought stress on the changes in biochemical traits and the level of expression of a MYB transcription factor gene in two wheat cultivars (Tajan and Zagros), under drought stress. The experiment was conducted as a factorial based on a completely randomized design with 3 replications. Drought treatments were applied at three levels of 40, 70 and 100% of field capacity 4 weeks after germination. Twenty days after the application of stress, leaves and roots were sampled in order to investigate the expression of MYB genes and measuring some biochemical traits. The results of examining the chlorophyll content under stress showed that the content of chlorophyll a and b decreased with increasing of stress intensity in different genotypes. The rate of reduction of chlorophyll a and b in Tajan genotype under severe stress was higher than Zagros genotype. Also, TBARM content under severe drought stress was significantly higher than moderate stress condition and this increase was seen in Tajen genotype more than Zagros genotype. qRT-PCR analysis showed that the MYB genes showed an increase in expression under drought stress. Furthermore, Zagros genotype, which is considered as a tolerant cultivar to drought stress, had a higher MYB expression level than Tajan cultivar for both genes, suggesting this cultivar for future breeding programs, also considering the importance MYB family genes during drought stress, the results can be used in molecular breeding and pyramiding breeding projects.

Fariba Ranjbar, Babak Abdollahi Mandoulakani, Raheleh Ghasemzadeh,
Volume 10, Issue 1 (9-2023)
Abstract

To evaluate the expression pattern of genes encoding antioxidant enzymes catalase, ascorbate peroxidase and polyphenol oxidase under iron deficiency conditions in Fe- efficient (Pishtaz) and -inefficient (Falat) bread wheat cultivars, a CRD (completely randomized design) based factorial experiment was conducted with three replications. The cultivars were grown under iron deficiency (Less than 1.5 mg Fe/kg soil) and compared with normal conditions (10 mg Fe/kg soil). The relative expression levels of the above-mentioned genes were measured using Real-time PCR technique in the leaves and roots of the cultivars at two growth stages: vegetative (one month after germination) and reproductive (30% of heading). The results revealed a remarkable enhancement in calatalse expression in the roots of both cultivars in the vegetatative stage but it was higher in Fe-efficient cultivar than -inefficient one. The expression of this gene was decreased in leaves at the same stage as well as in the roots of both cultivars in the vegetative stage. The expression level of ascorbate peroxidase gene in the reproductive stage in the roots of Fe-inefficient cultivar was higher than that of -efficient one. In the vegetative stage, the expression of this gene increased in the leaves and roots of Fe-efficient cultivar, but it was decresed in Fe-inefficient cultivar. The relative expression level of polyphenol oxidase gene in the vegetative stage under iron deficiency conditions in the leaf increased almost three times, compared to the roots, while the expression of this gene decreased in the reproductive stage in both leaves and roots. By increasing the expression of both catalase and ascorbate peroxidase genes in the roots of both cultivars in the reproductive stage under iron deficiency conditions, it seems that bread wheat cultivars might reduce the deletrious effects of stress and maintain yield through transferring much iron to the seeds in the seed filling stage. The findings of the present study may increase our understanding of the important role of genes encoding antioxidant enzymes in Fe deficiency stress conditions.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4657