[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 2 results for Biotic Stress

Dr Reza Darvishzadeh, Dr Hadi Alipour, Dr Ahmad Sarrafi,
Volume 4, Issue 2 (3-2018)
Abstract

Black stem disease is one of the most important fungi diseases in sunflower. Information about the mode of heritability and the effects of genes controlling trait could be most important for selecting breeding methods to black stem disease resistance. In this study, genotypes ENSAT-B5 and AS613 and a mutant genotype M5-54-1 with different response to MP8 and MP10 isolates were selected and F1, F2, BC1 and BC2 generations were made from ENSAT-B5×AS613 and ENSAT-B5×M5-54-1 crosses. Generations of crossing and parents of each set were planted in a completely randomized design with three replications and infected by M8 and M10 isolates. With the exception of the [(♀) M5-54-1 × ENSAT-B5 (♂)-MP10] cross, the lack of fit test of simple three parametric additive-dominance models for the [(♀) AS613 × ENSAT-B5 (♂)-MP8] and [(♀) AS613 × ENSAT-B5 (♂)-MP10] crosses were significant, indicating the presence of non-allelic interactions in the inheritance of the black stem disease resistance. In the estimated models for the different crosses, high and significant amount of dominant effects and dominant × dominant interactions suggested the importance of non-additive genetic effects. Therefore, selection for this trait in early generation could not be effectively successful and hybrid development is highly recommended for increasing the resistance to the black stem disease.
Kobra Arab, Rudabeh Ravash, Behrouz Shiran,
Volume 6, Issue 2 (3-2020)
Abstract

Increasing drought tolerance, especially in rice, which is one of the most important crops in Asia, is necessary. Transcription factors are specific sequence DNA-binding proteins that are capable of activating or suppressing transcription. These proteins regulate gene expression levels by binding to cis regulatory elements in the promoter of target genes to control various biological processes such as growth, cell division and response to environmental stresses. In this study, MAD8 and MYB93 genes that were involved in drought stress in rice were considered in two leaf and anther tissues at 0, 24, 48, 72 h and one week after stopping irrigation. The results of q-PCR analysis showed significant expression changes of these transcription factor genes under drought stress conditions. In this study, a significant increase in the expression of these genes at 24 h after drought stress in transgenic plants (Promoter region with accession: NC_029264.1 and GUS gene have transformed) compared to non-transgenic plants showed a relationship between these transcription factors and higher expression of transported promoter in transgenic plants.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 28 queries by YEKTAWEB 4657