[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 4 results for Additive Effects

Dr Reza Darvishzadeh, Dr Hadi Alipour, Dr Ahmad Sarrafi,
Volume 4, Issue 2 (3-2018)
Abstract

Black stem disease is one of the most important fungi diseases in sunflower. Information about the mode of heritability and the effects of genes controlling trait could be most important for selecting breeding methods to black stem disease resistance. In this study, genotypes ENSAT-B5 and AS613 and a mutant genotype M5-54-1 with different response to MP8 and MP10 isolates were selected and F1, F2, BC1 and BC2 generations were made from ENSAT-B5×AS613 and ENSAT-B5×M5-54-1 crosses. Generations of crossing and parents of each set were planted in a completely randomized design with three replications and infected by M8 and M10 isolates. With the exception of the [(♀) M5-54-1 × ENSAT-B5 (♂)-MP10] cross, the lack of fit test of simple three parametric additive-dominance models for the [(♀) AS613 × ENSAT-B5 (♂)-MP8] and [(♀) AS613 × ENSAT-B5 (♂)-MP10] crosses were significant, indicating the presence of non-allelic interactions in the inheritance of the black stem disease resistance. In the estimated models for the different crosses, high and significant amount of dominant effects and dominant × dominant interactions suggested the importance of non-additive genetic effects. Therefore, selection for this trait in early generation could not be effectively successful and hybrid development is highly recommended for increasing the resistance to the black stem disease.
Mehdi Rahimi, Maryam Abdolinasab,
Volume 6, Issue 2 (3-2020)
Abstract

Biochemical and physiological traits are affected by environmental stresses and therefore the breeding of these traits will play an effective role in stress tolerance. In this study, hybrids of five S7 lines of maize in a 5 × 5 half-diallel design were investigated in order to study the combining ability of biochemical and physiological traits of maize at the Research Farm of Graduate University of Advanced Technology, Kerman, Iran during the 2017-18 crop year based on randomized complete block design with three replications. The results of analysis of variance by fourth Griffing's method showed that the general (GCA) and specific (SCA) combining ability variances were significant for protein, proline, sugar content, carotenoid, chlorophyll a, chlorophyll b and total chlorophyll traits. Therefore, the role of additive and non-additive effects was identified in controlling these traits. Protein, proline, chlorophyll a and total chlorophyll traits were more controlled by additive effects, whereas the carotenoid trait was more controlled by non-additive effects and the role of additive and non-additive effects in controlling other traits was almost equal. The KSC704-S7-11 line showed positive and significant general combining ability for most of the studied traits, suggesting this line can be used in breeding programs to improve and increase stress tolerance. In addition, P1 × P3 and P4 × P5 crosses showed the most positive and significant specific combining ability for proline, chlorophyll a, total chlorophyll and carotenoid traits; thus they can be considered as the best hybrids to improve and increase stress tolerance in corn.

Mohammad Zabet, Amir Ebrahimzade, Zohreh Alizadeh, Ali Reza Samadzadeh,
Volume 6, Issue 2 (3-2020)
Abstract

The production of new and compatible cultivars to different environments is one of the most important goals for the breeders. The crossing new cultivars and the selection of superior genotypes for desirable traits among their offspring is a method that has always been used by breeders. 28 genotypes obtained from the crossing of a 7 × 7 one-way diallel experiment consisting of seven parents (Alvand, Anfarm9, Chamran2, BC Roshan, Qods, Ofogh, local variety Sorkh-dane) and their 21 hybrids were investigated in a randomized complete block design with three replications in the research field of the Faculty of Agriculture of University of Birjand (Iran) under non-stress and drought stress conditions. The analysis of variance showed a significant difference among genotypes for all traits. Mean squares of GCA and SCA were significant for all traits under non-stress and stress conditions, so, there were additive and non-additive components of heritable variance in all traits. The BC Roshan parent had the high combining ability and Ofogh parent had the lowest combining ability in most traits in non-stress and stress conditions. In both conditions, BC-Roshan × Chamran2, Sorkh-dane × Qods and Ofogh × Anfarm9 hybrids had the highest yield and yield dependent traits. Hayman's variance analysis showed that component a (additive genetic diversity), component b (dominance genetic diversity), component b1 (heterosis), component b2 (heterosis specifically for each parent), and component b3 (specific dominance deviation per cross) were significant in both conditions in all traits.The Hayman's analysis confirmed the results of Griffing's analysis.


Mohammad Zabet, Fahime Barazandeh, Alireza Samadzadeh,
Volume 10, Issue 1 (9-2023)
Abstract

To investigate the genetic structure of different sesame traits, 7 genotypes, including Ardestan, Sirjan, Fars, Sabzevar, Jiroft, Oltan and TS-3 were studied in the form of a 7 x 7 one-way diallel design in the research farm of the Faculty of Agriculture at University of Birjand during 2015-2018.The traits measured included plant height, height to the first capsule, number of auxiliary branches, number of leaves, leaf length, days to 50 % flowering, days to 90 % flowering, days to physiological maturity, number of capsules per plant, biological yield, grain yield, harvest index, number of seeds per capsule, capsule weight, capsule length, capsule width, chlorophyll a, b and total chlorophyll, oil and protein percentage.Hayman′s variance analysis showed that there were significant components a, b and b3 in all traits and components b1 and b2 in most traits. Parameters D, H1, and H2 were significant and the parameters F, h2 and E were not significant for most traits. The average degree of dominance (√H1/D) showed incomplete dominance and over dominance for all traits. The H2/(4H1) parameter was less than 0.25 in all traits except the day to 50 % flowering, suggesting that increasing and decreasing genes did not have symmetrical distribution among the parents. The parameter (√(4DH1)+F)/√(4DH1)-F ) showed symmetrical and asymmetrical distributions for the studied traits. In most of the traits, there was a dominant gene block controlling the traits. Broad sense and narrow sense heritabilities ranged 0.47-0.99 and 0.17-0.98, respectively. In general, all traits were controlled by genes with additive and dominance effects, so it is possible to select and produce hybrids in sesame. Considering that Fars, Oltan and TS-3 genotypes had the most dominant alleles, it is recommended that in future studies, attention should be paid to these three genotypes.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 30 queries by YEKTAWEB 4657