[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.

:: Search published articles ::
Showing 7 results for Yield

Negin Eslahi, Mojegan Kowsari, Mostafa Motallebi#, Mohammad Reza Zamani, Sepideh Akbari,
Volume 6, Issue 1 (9-2019)

The transition from the vegetative phase to reproductive phase is the most important event in production and genetic innovation. This phenomenon is influenced by many genetic and environmental factors in plants. According to studies carried out in this field, one of the environmental factors affects the reproductive and flowering process is Trichoderma species, which is abundant in soil. This study was carried out to evaluate the ability of two recombinant Trichoderma harzianum strains containing chimeric chit 42 (with CHBD domain) and wild-type strain to promote common bean flowering and yield increase in vivo condition. To do this, flowering parameters such as a number of flowers, flowering time and effective parameters in yield were evaluated. Also, expression level of some flowering-related genes such as FT and SOC1 were measured using real-time PCR. The results showed that the bean plants treated with recombinant strains had a significantly increased number of flowers and earlier flowering compared to the control and wild type Trichoderma. Also, plants treated with recombinant strains showed a significant difference in the number and weight of the pod compared to the plant treated with wild type strain and non-treated plants. In addition, the plants treated with T13 strain showed more expression levels of the FT and SOC1 genes (with ratio of 3.42 and 3.41 fold respectively) compared to other treatments and control plant. Finally, T13 recombinant strain exhibited a better performance compared to the other strains through a positive effect on flowering and then increased the crop yield.

Somayeh Dadashi, Reza Darvishzadeh, Mojtaba Nouraein, Hamid Hatami Maleki,
Volume 6, Issue 1 (9-2019)

For the purpose of graphical analysis and estimation of genetic parameters related to yield and its components, six tobacco genotypes was crossed in half -diallel mating design. In this study, the F2 progenies and their parents were evaluated in a randomized complete block design with three replications. The results of analysis of variance indicated a significant difference between genotypes for plant height, leaf number, leaf dry weight and leaf fresh weight. Hayman graphical method was utilized for analysis of data. Diallel analysis indicated existence of an additive and dominant actions in inheritance of all studied traits. Traits including plant height, leaf number, leaf length and width, stem diameter, internode distance and leaf dry weight possessed greater additive effects meanwhile in the leaf weight the dominance effect was greater. The additive gene action detected for leaf dry weight (yield) manifested the influence of selection methods in breeding of this trait. Due to the fact that the fresh weight of the leaf was controlled by dominance effects, so hybrid-based methods are effective in modifying this trait. Also, additive and dominance gene action were contributed in heritability of yield, plant height and number of leaves. Regarding the mean values of dominance degree and results of graphical analysis, the gene action for leaf fresh weight was over-domnance and so, the heterosis phenomenon could be used to increase and improve this trait. For the traits including plant height, leaf number and yield, the gene action type was relative dominance.

Amir Mohammad Mahdavi, Nadali Babaeian Jelodar, Ezatollah Farshadfar, Nadali Bagheri,
Volume 7, Issue 1 (9-2020)

In order to determine yield stability of 23 bread wheat genotypes and two commercial cultivars as check, an experiment was conducted based on a randomized complete block design with three replications in the experimental field of faculty of Agriculture, Razi University Kermanshah (Iran), during three cropping seasons (2015-2018). The results of combined ANOVA showed that the effect of environment, genotype and genotype × environment interactions on grain yield were significant (P<0.01). Stability was evaluated using environmental variance statistics, coefficient of variation, Wrick´s ecovalence, Shukla’s stability variance, Regression slope, deviation from regression slope, Plaisted and Peterson method and AMMI model. Variance analysis of additive main effects and multiplicative (AMMI) showed that three IPCAs were significant at 1% probability level. The first three principal components justified a round 85.7% of the sum of square of the interaction. Also, AMMI stability value (ASV) was used for simultaneously using information obtained from two significant components of AMMI. According to ASV index, genotypes Pishgam, Wc-4958 and Pishtaaz had the lowest ASV value and were known as the most stable genotypes. Genotypes Wc-4987, Wc-47615, Wc-47399 and Wc-47638 had the highest ASV value and distance from the center of Bi-plot. Therefore, Pishtaaz is one of the most stable genotypes due to having the first rank in terms of studied parameters as well as proper bakery properties and desirable drought resistance. In general, regarding to the climate change in the country, especially in the rainfed conditions and based on the above statistics and the biplots derived from AMMI analysis, the Wc-4958 line, with pishtaaz and Pishgam cultivars as stable and adaptable genotypes, are suggested to rainfed conditions on the studied area.

Shaghayegh Mehravi, Gholam Ali Ranjbar, Hamid Najafi-Zarrini, Ghader Mirzaghaderi,
Volume 7, Issue 1 (9-2020)

Anise is an annual plant belonging to Apiaceae family and fruit essential oil of this herb is used in various pharmaceutical, cosmetic and beverage industries. Drought stress is one of the most critical limiting factors for anise production in worldwide. In this research, to finding interrelationships among different traits and performance, some anise genotypes were evaluated using the biplot method. In this study, 18 anise genotypes were evaluated in normal irrigation regime and drought stress conditions according to a randomized complete block design with three replications at the field of the Western Australia University (UWA), Australia. Fifteen phonological, morphological and physiological traits were measured. Results indicated the positive and significant correlations between yield and fruit number and fruit thousand weight in both conditions. Due to the negative correlation between phonological features with fruit yield in two different irrigation conditions, it could be concluded that to have genotypes with high fruit yield, selection for early ripening genotypes should be done in anise. In this study, a significant correlation was observed between fruit yield and relative water content in the stress condition. Therefore, this trait can be used as a physiological index to evaluate drought tolerance in anise. According to cluster analysis based on the measured traits, genotypes were divided into 3 groups in both non-stress and stress conditions. According to the results of the comparison of the means of the groups in non-stress and drought stress conditions, genotypes No. 1, 5, 6, 11, 12, 14, 15 and 16 were identified as the most drought-tolerant genotypes. These genotypes could be utilized in breeding programs for further improvement of drought tolerance in anise germplasm.

Rahmatollah Karimizadeh, Tahmasb Hosseinpour, Jabbar Alt Jafarby, Kamal Shahbazi Homonlo, Mohammad Armion,
Volume 7, Issue 2 (3-2021)

There are different methods for study the genotype × environment interactions and determining stable genotypes such as parametric, non-parametric and multivariate methods. In this research, 19 selective genotypes from advanced trials of durum wheat at 2011-2012 agronomic year, have been cultivated with Dehdasht check cultivar for three growing years (2012-2015) in five locations (including Gachsaran, Gonbad, Khorramabad, Moghan and Ilam) in a randomized complete block design with four replications in each location. Combined analysis of variance indicated significant effects of genotype, environment and interactions of genotype × environment. In parametric uni-variate methods, genotypes 7, 12, 18 and 20 were determined as stable genotypes. In non-parametric uni-variate methods, genotypes 2, 7, 12, 13, 18, 19 and 20 had the lowest genotype × environment interaction and they were determined as stable genotypes. In AMMI method, genotypes 2, 7, 12, 19 and 20 had the lowest rank in different environments and highest grain yield, and these genotypes seems more stable genotypes. It can be concluded that genotypes 7, 12, 18 and 20 could be considered as promising genotypes and candidate for introducing new durum cultivar.

Samaneh Akbari, Omidali Akbarpour, Payam Pezeshkpour,
Volume 8, Issue 1 (8-2021)

The challenge of the interaction of genotype × environment is one of the main issues in plant breeding. Various statistical methods to estimate the interaction of genotype × environment and choice the stable and productive genotype(s) have been introduced. In this study, 14 lentil genotypes along with two controls (Sepehr and Gachsaran cultivars) were evaluated during four growing seasons (2016-2020). The experiments were conducted in a randomized complete blocks design in three replications at Sarab Changai Agricultural Research Station, Khorammabad (Iran). The combined analysis of variance was used to investigate the interaction of genotype × environment, and results of the analysis showed significant effects for genotype, year, and genotype × environment interaction. Genotypes G5 (FLIP2014-032L) and G12 (ILL8006) were introduced based on Si(1), Si(2), and NPi(1) statistics as stable and high-yielding genotypes. Based on various non-parametric statistics, genotypes G5 (FLIP2014-032L) with a mean grain yield of 1574.68 kg.ha-1 and G12 (ILL8006) with a mean grain yield of 1333.6 kg.ha-1 were introduced as stable genotypes. The heritability rate was estimated on the plot mean basis for yield trait in four years (0.61 ± 0.18) which indicated the capability of the studied genotypes to be selected and improved for grain yield. Based on the results of cluster analysis, the genotypes were divided into three main clusters. The highest distance was observed between the second and third groups. The first cluster included highly stable genotypes.

Ali Barzgari, Saeed Malekzade Shafaroudi, Saeed Khavari Khorasani, Farajollah Shahriari Ahmadi,
Volume 8, Issue 2 (3-2022)

In breeding programs determination of gene effects and general and specific combining ability for screening of test crosses is necessary. In order to estimate the genetic variance components and the general and specific combining ability of sweet corn lines, an experiment was conducted using 8 sweet corn S6 inbred lines (including 4 maternal and 4 paternal lines) by line × tester mating design in 2019, at the Agricultural and Natural Resources Research and Education Center of Khorasan Razavi Province, Mashhad, Iran. The obtained test cross hybrids were evaluated in a randomized complete block design with 3 replications in 2020. The results of line, tester and line × tester analysis for most of measured traits showed significant differences (p < 0.05). The σ2gca/σ2sca ratio for grain yield was equal to 0.1, showed that while both additive and dominance effects play a role in controlling this trait, but dominance effect was higher. The results for general combining ability of L3 and T1 lines showed positive and significant GCA effect for grain yield. Also, the specific combining ability of grain yield showed that T4 × L2, T1 × L3 and T3 × L1 had the highest SCA rate. In this study, in terms of grain yield, T1 × L3, T4 × L2 and T1 × L4 with 33.96, 30.47 and 27.85 tons per hectare had the highest green ear yield, respectively. These combinations can be as the hybrids with high yield potential in advanced breeding programs for release of new sweet corn varieties.

Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.14 seconds with 33 queries by YEKTAWEB 4419