[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 2 results for Khodaei

Samira Khodaei, Seyed Abolghasem Mohammadi, Behzad Sadeghzadeh,
Volume 1, Issue 2 (2-2015)
Abstract

Phosphorus is one of the important macronutrients involved in various physiological and metabolic pathways. It has also major role in development and transmission of energy. To map QTLs for the traits associated with phosphorus accumulation at shoot stage in barley, 148 doubled haploid lines derived from a cross between Sahara3771 and Clipper cultivars were evaluated in greenhouse condition. Analysis of variance showed, that significant differences among the lines for all traits. Transgressive segregation was observed for all traits. Linkage map of population consist of 246 SSR, EST-SSR markers, 238 RFLP, 26 retrotransposone markers including IRAP, REMAP and a morphological marker that coverd 1099.09 cM of barley genome and an average distance of 2.15 cM between two adjacent markers. In total, 13 QTLs were identified for phosphorus concentration and content at five-leaf and maturity stages. For phosphorus concentration and content at five leaf stages three and two QTLs were found, respectively. Four QTLs were detected for phosphorus concentration at maturity stage. Out of which three and one QTL showed positive and negative additive effects, respectively. For phosphorus content of single plant at maturity stage, four QTLs explaining 60% of phenotypic variance were mapped. Out of 13 QTLs identified for the trait, 10 QTLs had positive additive effects, indicating the role of Clipper alleles in this loci in increasing the related traits value in offspring. In the present study, one common QTL identified which could be due to genetic linkage or pleiotropic effect.
Azadeh Souri, Asghar Mirzaie-Asl, Leila Khodaei, Mohammad Reza Abdollahi,
Volume 6, Issue 2 (3-2020)
Abstract

Autumn sowing of sugar beet is a suitable way in sustainable agriculture. Bolting is an undesirable phenomenon which reduces sugar beet yield and it is the most important limiting factor in autumn sowing of sugar beet. Identification and comparison of the sequence of flowering genes in various genotypes can help to understand the molecular mechanisms controlling bolting. In the previous studies, it was revealed that expression level of FT1 and VIN3 genes in sugar beet is associated with bolting resistance. In this study, the sequence of FT1 gene promotor and three versions of VIN3 gene promoters of sugar beet were compared in three bolting resistant and three bolting susceptible genotypes. Primer design for each gene was carried out using the DNA sequences found at the NCBI database. DNA was extracted from leaf samples growing in pots and was used as template in PCR reactions. Similar length of amplified fragments for each promoter gene in bolting susceptible and bolting resistant genotypes were selected and sequenced for more accurate assessment. There was no mutation in the FT1 gene promoter, however 624 substitution and insertion/deletion mutations were observed in the promoter of three versions of VIN3 gene. A 228-bp ins/del region was detected in the VIN3-like1 promoter. This region contains promoter elements and seems to have a control function. Comparison of detected mutations between susceptible and resistant genotypes did not show a distinct pattern for bolting.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 28 queries by YEKTAWEB 4642