[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 5 results for Asghari

Sara Motallebinia, Omid Sofalian, Ali Asghari, Ali Rasoulzadeh, Bahram Fathi,
Volume 6, Issue 1 (9-2019)
Abstract

In the present study, in order to evaluate the drought tolerance indices and their relationship with ISSR markers, 12 rapeseed genotypes were studied using a factorial experiment based on completely randomized block design under the three irrigation treatments (control and irrigation after drainage of 60 and 85% moisture content) in the greenhouse of Mohaghegh Ardabili University, Iran. Drought tolerance genotypes were evaluated by quantitative indices including MP, GMP, SSI, STI and TOL. Cultivars in all five of indices at two levels of stress exhibited significant differences. Regarding the results of the mean comparison at both levels of stress, SLMO46 was identified as the most resistant cultivar with the highest amount of MP and STI, and Karun was the most sensitive one with the highest amount of SSI index. According to the results of factor analysis, in the first level of stress, Sarigol32 and Karun were sensitive, and in the second level of stress, Talaye and Sarigol32 were sensitive as well. SLMO46 was known to be resistant to stress in both levels of stress. Phenotypic correlation of grain yield under stress and non-stress conditions was investigated in two levels of stress with 5 drought indices. In first level of stress condition, grain yield had a positive and significant correlation with mean productivity, geometric mean of productivity and stress tolerance index. In the second level of stress condition, the same correlation was observed with the difference that there was no significant correlation between drought tolerance and tolerance indices. Canonical correlation analysis was performed between drought indices and molecular markers. Five ISSR primers (5, 9, 11, 14 and 19) with the highest polymorphic percentages were used for calculation using the first factor coefficients. ISSR-PCR was used to identify some of the molecular markers associated with drought tolerance indices. A total of 106 clear and score-able loci were amplified by 18 ISSR primers, of which 60 bands (56.6%) were polymorphic. Finally, according to the results, these markers can be used in rapeseed breeding programs for drought tolerance.

Mehrnoosh Rafeie, Mohammad Reza Amerian, Behzad Sorkhi, Parviz Heidari, Hamid Reza Asghari,
Volume 6, Issue 2 (3-2020)
Abstract

To investigate the effect of exogenous brassinosteroid application on grain yield, catalase, chlorophyll content, membrane mtability index and gene expression of some genes involving in brassinosteroid signaling pathway (BES1 and BRI1) under drought stress, a split-split plot on randomized complete block design with three replications was conducted at the experimental field of Seed and Plant Improvement Institute, Karaj, Iran in 2019. The main factor was two irrigation treatments (normal irrigation and water holding after 50% flowering stage), the subplots were four concentrations of brassinosteroid (0, 0.25, 0.625 and 1 mg/l) and seven genotypes (Mehregan, Paris, 2858, 3505, 3737, 4228 and 4056) were considered as sub-sub plots. Samples were taken at 30 days after 50% flowering stage (zadoks 89) from flag leaves. The results showed that drought stress significantly reduced grain yield, chlorophyll content, membrane stability index and increased catalase in all genotypes. Genotype 4228 was identified as the most tolerant genotype among unknown wheat genotypes based on grian yield, chlorophyll content, membrane stability index and catalase. Also, the result revealed that applied epibrassinolide could reduce the destructive effects of drought stress on wheat thus grain yield was enhanced under drought stress in all genotypes by increasing the aforementioned traits. Forethermore, grain yield was increased by rising the epibrasinolide concentration. Gene expression pattern of TaBES1 and TaBRI1 using real-time PCR showed that although brassinosteroid enhances drought tolerance in wheat but its signaling pathway is different from the BRI1 signaling pathway.

Syed Mehran Alavi Mehryan, Nasser Zare, Asad Masumiasl, Parisa Sheikhzadeh, Rasool Asghari,
Volume 7, Issue 1 (9-2020)
Abstract

Ferulago angulata (Schlecht) Boiss is one of the valuable and endemic medicinal plants of Iran, which is of great importance due to the source of terpenoid compounds and antimicrobial properties. In current study, the effects of different concentrations of salicylic acid and yeast extract in cell suspension culture of F.angulata on expression pattern of the HMGR and GPPS genes (involved in terpenes biosynthesis) were investigated for the first time. The F. angulata cell suspension cultures were initiated and established using calli derived from leaf explants, and salicylic acid and yeast extract elicitors (with 50, 100 and 150 mg/L concentrations) were added to the cultures during active growth. Then, the cell samples were prepared at 24, 48 and 72 hours after treatment. Analysis of expression pattern of HMGR and GPPS genes using Real-time PCR showed that the expression of both genes were significantly influenced by the type and concentration of the elicitors and also the times after treatment. The relative expression of HMGR and GPPS genes under elicitors were increased compared to the control, and furthermore, the increase in the relative expression of these genes under salicylic acid treatment was significantly higher than that of yeast extract treatment. The highest relative expression of GPPS and HMGR genes was related to 100 mg/L salicylic acid treatment at 24 hours after treatment. However, the highest relative expression of these genes was observed under the 24 and 72 hours after treatment of 150 mg/L yeast extract. The results of this study could be useful in metabolic engineering of F. angulata.

Alireza Asghari Mirak, Seyed Siamak Alaviakia, Seyed Abolghasem Mohammadi,
Volume 9, Issue 1 (9-2022)
Abstract

Henbane has a high medicinal value due to the presence of hyoscyamine and scopolamine alkaloids. Improving the quality and quantity of henbane alkaloids using modern breeding methods requires evaluating the genetic diversity. The genetic diversity of henbane has been investigated using morphological, biochemical and molecular markers in several studies and the superiority of molecular markers over other markers has been proven. To this end, in 2018, the genetic diversity of 96 henbane genotypes collected from the habitats of northwest Iran was investigated using IRAP and REMAP molecular markers. For IRAP markers, out of 36 possible combinations obtained from eight LTR primers, seven combinations had a fine and scalable amplification. In the REMAP technique, the combination of 11 ISSR primers with eight LTR primers was used, and 12 combinations could be scored out of 88 possible combinations. The average amount of polymorphic information for IRAP and REMAP markers was 0.30 and 0.32, respectively, and the average marker index for these two markers was estimated as 2.59 and 2.47. Based on these criteria, REMAP marker was more efficient than IRAP in estimating the genetic diversity of henbane. In the analysis of molecular variance using IRAP and REMAP markers, intra-population variability was estimated to be higher than inter-population, which indicates the high diversity of these populations in northwestern Iran. Cluster analysis based on IRAP marker failed to separate species and populations, but REMAP marker was able to separate H. pusillus and H. reticulatus species to a high degree. A high shannon index in this research suggests that IRAP and REMAP retrotransposon markers resulted in a high genetic diversity within henbane populations with a high insertion in the genome of henbane populations.

Mozhgan Shirinpour, Ehsan Atazadeh, Ahmad Bybordi, Saeid Aharizad, Ali Asghari, Ashkboos Amini,
Volume 10, Issue 1 (9-2023)
Abstract

Considering the importance of maize production and the impact of water deficit stress on reducing the yield of maize, estimating the genetic components and heritability of traits for determine the breeding method under water deficit stress is essential in breeding programs. The generations drived from a cross between two inbred lines of maize including B73 (maternal line) and MO17 (paternal line), SC704 (F1) as well as F2, BC1, BC2 and F3 generations in order to estimate the genetic effects and heritability of yield, yield components and morphological traits were studied. Seven maize generations using the generations mean analysis under the full irrigation, mild and severe water deficit conditions were evaluated. The experiment was conducted in the form of randomized complete block design with 20 replications per experimental unit during two cropping seasons (2018-2019) at the Agricultural Research Station of University of Tabriz. The results of two-year combined analysis of variance and mean comparisons under three different irrigation regimes showed that water deficit stress significantly reduced all of the studied traits (except root/shoot ratio). The generations mean analysis showed the high contribution of non-additive gene effects for the genetic control of grain yield, ear diameter, number of kernel row, ear weight (in full irrigation conditions), 100 grain weight, plant height, fresh shoot weight and biological yield traits. According to these results, selection in the advanced generations and the breeding method based on hybridization can be effective to improve these traits. Also, the significant contribution of additive gene effects in controlling the inheritance of ear length, ear weight (in both stress conditions) and root/shoot ratio traits indicated that selection in early segregating generations and inbred parents can be effective for breeding of these traits and taking advantage of additive variance. Hybrid SC704 and inbred MO17 compared with the inbred B73 showed the lowest variation percentage under the water deficit stress conditions, which indicated their high yield potential and stability in the stress conditions.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 31 queries by YEKTAWEB 4642