[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 2 results for Abdi

Abdul Karim Tahmasebi, Reza Darvishzadeh, Amir Fayaz Moghaddam, Esmaeil Gholinezhad, Hossein Abdi,
Volume 8, Issue 2 (3-2022)
Abstract

The selection of genotypes based on multiple traits is a fundamental issue and an important part of the process of plant breeding. In the present study, the efficiency of selection indices based on phenological, morphological and physiological traits was studied to improve sesame grain yield. The evaluation of 25 sesame populations was realized in a completely randomized design with 10 replications under Urmia conditions in 2017.The results showed that phenotypic and genotypic correlations between grain yield and No. of capsules per plant, No. of grains per capsule, No. of branches, leaf temperature, leaf index and biological weight were positive and significant. By regression and path analysis, the No. of capsules and No. of branches were identified as the variables of the first-order cause and biological weight, harvest index, leaf index, plant height and chlorophyll as the second-order cause variables, among which only plant height had a direct negative effect. In order to obtain selection indices, two optimal and basic methods and ten different vectors of economic values of traits were used. The vectors were based on the analysis of correlation, regression, path and broad sense heritability. The third and fourth indices, in which the first-order cause entered the model, showed high relative efficiency and in terms of these two indices, and the sesame populations with code number of 12, 17, 18 and 19 populations were identified as the most desirable populations. Finally, it is suggested that the efficiency of these selection indices be evaluated in the field

Hossein Abdi, Hadi Alipour, Iraj Bernousi, Jafar Jafarzadeh,
Volume 10, Issue 1 (9-2023)
Abstract

Evaluating the population structure is essential for understanding diversity patterns, choosing proper parents for crossing, accurate identification of genomic regions controlling traits, and evolutionary and kinship relationship studies. In this research, the genetic structure of a wheat population was studied in a panel consisting of 383 Iranian wheat genotypes of hexaploid (cultivars and landraces) and tetraploid species based on distance-based methods (principal component analysis and discriminant analysis of principal component). For this purpose, 16270 single nucleotide polymorphism (SNP) markers obtained by the GBS technique were used. According to the results, almost a quarter of the total variance was belonged to the diversity between populations, and the Fst coefficient between cultivars and landraces was equal to 0.15. In contrast, the above coefficient between tetraploid samples and hexaploid landraces was high and equal to 0.44. Genome D had the lowest value of Fst index and chromosome 4B showed the highest Fst coefficient, and other genetic diversity indices. Although the PCA biplot distinguished hexaploid wheat cultivars from landraces, it was unable to distinctly separate tetraploid genotypes from other genotypes. Accurate evaluation of the population structure with the DAPC method was able to identify and separate the predetermined successfully groups, suggesting that the DAPC approach maximizes the differentiation between groups and minimizes the changes within the group. Partial admixture between cultivars and landraces of hexaploid wheat can be related to gene exchange between these two groups or perhaps their wrong labeling at the time of collection. In general, the results of this study provided valuable information about the genetic differentiation of Iranian tetraploid and hexaploid wheat, which can be used in future wheat breeding programs. Further, protecting these genotypes in gene banks is necessary for different strategies.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.08 seconds with 28 queries by YEKTAWEB 4642