[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 2 results for Kazemitabar

Mohammad Reza Salavati Meybodi, Gholam Ali Ranjbar, Seyed Kamal Kazemitabar, Hamid Najafi Zarrini,
Volume 4, Issue 1 (9-2017)
Abstract

Water stress is one of the most common environmental stresses that limited tobacco production in IRAN. Identification of genetic diversity in tobacco germplasm and genetic relationships between traits help to improve tolerant varieties. In this study, the genetic diversity of 100 flue–cured tobacco (Nicotiana tabacum L.) cultivars was analyzed using 15 morpho-physiological traits and 25 ISSR primers. The cultivars were cultured in a simple lattice design (10×10) with two replications (with and without water stress) in Tirtash Tobacco Institute, Iran. Results showed relative water content (RWC) and cell membrane stability (CMS) in normal condition were significantly higher than stress condition. The estimated broadsense heritability was low for RWC and CMS that represents large environmental effects on these two traits. The results of genotypes clustering by UPGMA method with ISSR markers and by WARD method with morph-physiological traits did not match. Primer UBC814: (CT) 8A with 16 polymorphic bands of the 17 bands, had higher resolution than other primers and seems appropriate for molecular diversity studies in tobacco. The K394 genotype was identified as well as drought tolerant varieties. We can use results of this study for selecting genotypes with great genetic differences and chose the desirable traits and use in breeding programs for producing high heterosis hybrid with tolerance to drought stress in tobacco.
Abbas Gholipour, Seyed Kamal Kazemitabar, Sara Sharifi Soltani,
Volume 7, Issue 2 (3-2021)
Abstract

Sweet flag (Acorus calamus) is a perennial, semi-aquatic and aromatic plant of the family Acoraceae that, in addition to its multiple medicinal properties, is used in health, food and agricultural industries (as pest control). This research was conducted to comparasion study of genetic diversity of natural and regenerated plants from tissue culture of Arzefon, Pelesk and Alandan populations of Sweet flag by using ISSR molecular markers. Out of 15 screened primers, 9 primers produced the most polymorphic bands. Totally, these primers generated 83 bands, of which 52 bands (62.65%) were polymorphic. The percentage of polymorphic locus for natural and regenerated plants was 43.37% and 55.42%, respectively, and Nei’s genetic diversity (H) was calculated to be 0.239 for the two studied groups. The Shannon’s index (I) for natural and regenerated plants was estimated to be 0.251 ± 0.033 and 0.299 ± 0.031, respectively. Among the natural and regenerated groups, the highest genetic similarity was observed between the samples of Alandan population (0.63), and the lowest value was observed between the samples of Pelesk population (0.44). Analysis of molecular variance (AMOVA) showed that 94 % of genetic variation attributed to whithin groups and 6 % to between groups. Based on the results, the genetic diversity of the regenerated plants was higher than the natural plants. According to the results of the present research, the lowest rate of genetic divergence was observed between natural and regenerated plants of Alandan populatiuon, so the plants of this population could be suitable for domestication and cultivation in Iran.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 28 queries by YEKTAWEB 4642