[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 2 results for Hajiahmadi

Zahra Hajiahmadi, Reza Shirzadian-Khorramabad2, Mahmood Kazemzad, Mohammad Mahdi Sohani,
Volume 4, Issue 2 (3-2018)
Abstract

Tomato leafminer (Tuta absoluta) is one of the important pests of tomato in Iran. It causes serve losses to tomato yield between 50 to 100% in the world. The cryIAb gene has been introduced into many plant species, including maize resulting in protection of the maize plants against corn borer larvae. In most studies, constitutive promoters such as CaMV35S were employed for genetic transformation; however the constitutive expression of genes led to changes in plant metabolic pathways due to permanent energy consumption in plants. Since, wound inducible promoter MPI (Maize Protease Inhibitor) posses more efficiency and strength than CaMV35S promoter. Therefore, in the current study, transgenic tomato (cv. Falat) plants harboring cryIAb gene under control of the MPI promoter were developed for the first time. The MPI promoter was isolated from maize and cloned into pPZP122 expression vector replacing the CaMV35S promoter. The cryIAb gene was isolated from pCIB4427 and cloned in pPZP122:MPI:cryIAb and the resulting construct was transformed into Agrobacterium AGL1 strain using In planta approach. Initial selection of the transgenic plants was carried out in media culture containing gentamicin. PCR analysis confirmed the presence of transgene in gentamycin-resistance plants in the first and second generations by rate of 62.5% and 75.58%, respectively. Protein dot blotting using anti-CryIAb polyclonal antibody confirmed the presence of protein in the second generation of transgenic lines. Based on the result of Tuta bioassay, transgenic plants demonstrated an enhanced resistance against Tuta. Thus, the wound inducible promoter MPI can be used in genetic transformation of crop plants if insecticidal protein-encoding genes (such as different types of cry) are used and therefore, it is important to be used when plants asked to express only when are being attacked by insect pests.
Khadijeh Abbaszadeh, Reza Shirzadian-Khorramabad, Mohammad Mahdi Sohani, Zahra Hajiahmadi,
Volume 9, Issue 2 (3-2023)
Abstract

Salinity stress affects morpho-physiological and biochemical traits of plants. The transgenic Bt plants play a significant role in pest control, but their response and ability to cope with environmental stresses still need to be evaluated. Therefore, effect of salinity stress at 0, 50, 100, 150, and 200 mM on morphological, physiological, and molecular traits of T3 transgenic tomato plants containing cry1Ab gene (CH-Falat-Bt) was investigated and compared with that of the non-transgenic control (CH-Falat). Evaluation of the morphological traits (leaf area, root length, fresh and dry weight of roots) at different salinity levels revealed that CH-Falat-Bt transgenic plants are more tolerant to salinity stress compared to CH-Falat non-transgenic plants. The chlorophyll content at 150 and 200 mM salinity levels was 12 and 9% plants, respectively. Moreover, the amount of RWC, carotenoids, proline and soluble sugars increased significantly in transgenic plants as salinity levels increased. The relative expression of SOS1 and SOS2 genes showed a significant increase in all salinity levels in CH-Falat-Bt transgenic plants compared to CH-Falat non-transgenic plants. The amount of electrolyte leakage in the transgenic plants was significantly reduced compared to the non-transgenic plants. The results of morphological, physiological, and molecular investigations of CH-Falat-Bt transgenic plants confirmed that the undesirable effects of salinity stress on transgenic plants is much less than non-transgenic ones. in general CH-Falat-Bt transgenic plants are more tolerant to different applied salinity levels than the wild variety.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 28 queries by YEKTAWEB 4642