[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 24 results for Hadi

Elham Ghazizadeh, Amir Mousavi, Faranak Hadi,
Volume 1, Issue 2 (2-2015)
Abstract

As genetically modified organisms (GMOs) development is now increasing, detection and determination of their quantitative threshold using reliable methods would be necessary. The goal of this study was to introduce a sensitive method for qualitative and quantitative detection of Roundup-ready soybean samples. For primary screening, semi-quantitative molecular assays have been used for detection of various percentages of transgenic and non-transgenic Roundup-ready soybean samples. Furthermore, an experiment was conducted using the CaMV 35S primers in combinations with soybean lectin-specific primers in two imported samples of soybean seeds. Real-time PCR-based analysis indicated that the amount of GMO material in the seeds and the limit of detection (LOD) obtained for 35S sequence was less than 1%. The sensitivity and accuracy of this method had conformity with the international standards of seed labeling. This is the first report of its type for quantitative detection of a genetically modified material in a commercial seed lot in Iran.
Zeinab Bahari, Abdolali Shojaeiyan, Sajad Rashidi Monfared, Amin Mirshekari, Khadije Nasiri, Marzieh Amiriyan,
Volume 2, Issue 1 (5-2015)
Abstract

Knowledge about the amount of genetic diversity and understanding relationship between species and landraces is an important step in plant germplasm conservation. In this study, within and between genetic diversity of 17 dill landraces (Anethum graveolens L.) from different areas of Iran was evaluated using five ISSR markers. In total, 29 polymorphic bands were generated. The average of polymorphism was 54.7%. The highest and the lowest values of Polymorphic Information Contents were 0.46 for ((CA)8G primer) and 0.40 for ((AG)8T primer), respectively, and with an average of 0.43. Based on the highest and the lowest indices of Polymorphic Loci (0.392 and 0.248), expected heterozygosity (93.10 and 62.07) and shannon's Information Index (0.567 and 0.360) between all populations, the highest and lowest genetic diversity was detected among Ardebil and Azarshahr genotypes, respectively. The genetic dissimilarity matrix showed that Sari and Kerman populations had the highest genetic distance and Ardabil and Borazjan populations had the lowest ones. Partitioning variations within and between populations, using an analysis of molecular variance (AMOVA), showed that 12% of the total genetic variation existed between growing regions. Cluster analysis based on UPGMA method showed a poor relationship between genetic distance and the geographical grouping of dills.


Fatemeh Sahranavard Azartamar, Mortaza Ghadimzadeh, Reza Darvishzadeh,
Volume 2, Issue 2 (3-2016)
Abstract

Knowledge about the amount of genetic diversity and understanding relationship between genotypes are important steps in plant germplasm conservation and breeding activities. In this study, the genetic diversity among 106 sunflower lines was assessed by 30 microsatellite primers. A total of 71 alleles were detected. Number of alleles in microssatellite loci ranged from 2 to 4 with the average number of 2.207 alleles per locus. The effective number of alleles ranged from 1.058 in locus ORS718 to 3.147 in locus HA3040. The average number of effective alleles was 1.641. The mean of PIC value was 0.344. Based on allele number and PIC value, SSR loci such as HA3040 and ORS733 are considered appropriate markers for studying genetic diversity in oily sunflower. Based on the results of cluster analysis using Jaccard's similarity coefficient and complete algorithm, the lines were grouped into four groups. Nineteen six out of 106 genotypes were grouped according to their origins (research centers). The highest and lowest Nei genetic distances were 0.21 and 0.004 between “NOVARTIS and HUNGARY” and “SPII with ENSAT and INRA-MONTPOL” groups, respectively. Analysis of the population structure revealed 5 subpopulations in the studied panel. The results show that the assignment of lines to subpopulations is not concordance with their geographical distribution pattern. The genetic diversity and distance revealed by SSR markers can be used in oily sunflower crossing and breeding programs
Ensieh Taheri, Reza Shirzadian-Khorramabad, Gholamreza Sharifi-Sirchi, Atefeh Sabouri, Khadijeh Abbaszadeh,
Volume 2, Issue 2 (3-2016)
Abstract

Yarrow plant or plain short type yarrow, known as Achillea wilhelmsii C. kock, belongs to Asteraceae family. The present study was conducted in order to evaluate three different yarrow populations for determination of their genetic relationship, using morphological traits in the form of nested design as completely randomized with ten replications. General heritability of all traits ranged from 98 to 100, indicating a high heritability for these traits. The highest coefficient of genetic variation belonged to root diameter (1.66), indicating the existence of hifh diversity among genotypes. The lowest coefficient of genetic variation belonged to leaf length to width ratio (0.36), suggesting a low level of variation for this character. Based on PCA analysis, the first two components justified almost 90 percent of total variations. The three populations were nearly separated according to biplot analysis. Also, cluster analysis confirmed the biplot results and the populations were identified as three separated clusters which reflect the apparent difference among yarrow populations. The results of this study showed a wide genetic diversity for evaluated populations with regarding measured traits in Hormozgan province. Aforementioned findings indicated a dormant potentials of native yarrow populaton in south Iran and high value of these resources and obviously more attention need to be paid to identify, maintenance, assessing and apply them in breeding programs.
Hadi Karimbeigi, Farhad Nazarian-Firouzabadi, Mitra Khademi, Elham Mousav,
Volume 3, Issue 1 (9-2016)
Abstract

Oilseed rape (Brassica nupus L), a member of Brassicaceae family, is an important crop regarding oil production worldwide. Brassicaceae is an economically important family of flowering plants with about 350 genera and more than 3000 species. Eleven pairs of single sequence repeat (SSR) primers were used to identify the genetic diversity among 21 oilseed rape genotypes. Results of SSR molecular marker analysis revealed that SSR primers produced a total number of 76 scorable bands of which 46 (60.5%) bands were polymorphics. The average number of bands for each primer and genotype was 6.9 and 3.6, respectively. Both CB10036B and Na10A09 primers produced 10 and Cb10403 primer produced 4 polymorphic bands, respectively. UPGMA cluster analysis based on Dice similarity matrix showed that Zarfam and Gerinimo genotypes had the highest (0.99%) and Licord and KS-11 genotypes had the lowest (0.72%) similarity. Both Iranian and foreign genotypes were grouped together in one major cluster, indicating presumably they may have the same origin and/or common pedigree. Results of AMOVA analysis within and between groups (spring – Autumn) revealed that almost 97% of total genetic diversity belonged to within group genotypes. 
Saeed Bagherikia, Mohammadhadi Pahlevani, Ahad Yamchi, Khalil Zenalinezhad, Ali Mostafaie,
Volume 4, Issue 1 (9-2017)
Abstract

Under drought stress conditions, as one of the most important limiting factors of grain yield in wheat at arid and semi-arid regions, the remobilization of assimilates gain would be more valuable to grain filling. There are a few reports on the importance of remobilization of the root during the grain filling period under drought stress conditions. An advanced mutant line of bread wheat (T-65-7-1) along with its wild type (cv. Tabasi), were planted at two moisture conditions (normal and 30-40% of field capacity) as a factorial experiment based on a completely randomized design with three replications. Sampling for gene expression analysis was conducted from the root in two stages (7 and 21 days after anthesis). In these genotypes, fructan remobilization, efficiency of fructan remobilization, and relative expression of genes involved in the synthesis and hydrolysis of fructan during the grain filling period, in root, were studied under terminal drought stress. The results showed that the stored fructan in the root participated in the assimilate remobilization. Higher fructan remobilization through root to grain in mutant line under drought stress conditions was due to over-expression of genes involved in the synthesis of fructan (1-SST and 6-SFT) at 7-days after anthesis and in hydrolysis of fructan (6-FEH) at 21-days after anthesis, compared to wild type. Drought stress did not cause a significant change in gene expression of 1-FFT and 1-FEH genes in the root of both genotypes, which confirms the only β (2,6) linkages as predominant form of fructan has affected under drought stress conditions. In wheat breeding programs, 1-SST, 6-SFT and 6-FEH can be used as molecular markers for selecting genotypes with high fructan content and more remobilization.
Dr Reza Darvishzadeh, Dr Hadi Alipour, Dr Ahmad Sarrafi,
Volume 4, Issue 2 (3-2018)
Abstract

Black stem disease is one of the most important fungi diseases in sunflower. Information about the mode of heritability and the effects of genes controlling trait could be most important for selecting breeding methods to black stem disease resistance. In this study, genotypes ENSAT-B5 and AS613 and a mutant genotype M5-54-1 with different response to MP8 and MP10 isolates were selected and F1, F2, BC1 and BC2 generations were made from ENSAT-B5×AS613 and ENSAT-B5×M5-54-1 crosses. Generations of crossing and parents of each set were planted in a completely randomized design with three replications and infected by M8 and M10 isolates. With the exception of the [(♀) M5-54-1 × ENSAT-B5 (♂)-MP10] cross, the lack of fit test of simple three parametric additive-dominance models for the [(♀) AS613 × ENSAT-B5 (♂)-MP8] and [(♀) AS613 × ENSAT-B5 (♂)-MP10] crosses were significant, indicating the presence of non-allelic interactions in the inheritance of the black stem disease resistance. In the estimated models for the different crosses, high and significant amount of dominant effects and dominant × dominant interactions suggested the importance of non-additive genetic effects. Therefore, selection for this trait in early generation could not be effectively successful and hybrid development is highly recommended for increasing the resistance to the black stem disease.
Arash Salami, Mohammadhadi Pahlevani, Khalil Zenalinezhad, Mohsen Esmaeilzadeh Moghaddam,
Volume 5, Issue 1 (9-2018)
Abstract

Collection and conservation of germplasm, particularly for landraces of important agronomically species and organizing their information, cause to continuity of their usefulness and reduce the risk of their genetic erosion. In this experiment, 10 Iranian wheat landraces along with the Chinese Spring cultivar, as control, were used to assess inter and intra populations variation by using ISSR molecular markers and morphological traits. Evaluation of populations in terms of height, spike length, awn length, number of spike nodes, number of grains per spike, flag leaf length and grain weight showed that there were considerable variation among landraces. Also, in some landraces like KhorramAbad and Ardabil, intra population diversity for some of these traits, such as plant height and length of awn, was obvious. Evaluation of the landraces for ISSR markers showed that among 99 scored bands, 78 bands were polymorphic. Percent of polymorphism with mean of 81.88 % was varied from 53.33 for primer of ISSR-4 to 100% for primers of ISSR-9, ISSR-14, ISSR-5 and ISSR-7. Average PIC of the landraces was estimated 3.0. Results of this study showed that there was considerable intra population diversity for the ISSR markers in landraces of KhorramAbad, Maragheh and Torbat-e-Heydarieh however, a little diversity for Khoy, Ahwaz, Isfahan, Mashad, Urmia, Shiraz and Ardabil was observed. Results of this study showed that there is inter and intra genetic diversity within Iranian landraces of wheat with different levels and these landraces can be used as basic population for extraction of pure lines.

Khadijeh Mousa Khalifani, Reza Darvishzadeh, Masoud Abrinbana, Aram Nouri,
Volume 5, Issue 2 (3-2019)
Abstract

Sunflower (Helianthus annuus L.) is an important crop that its oil has nutritional and high economic value. Basal stem rot, caused by Sclerotinia sclerotiorum and S. minor, is one of the important and devastating disease of sunflower. The use of resistant cultivars is considered as the most important and effective method to control the disease. In this study, the reaction of 100 oily sunflower lines to three isolates of S. sclerotiorum and three isolates of S. minor was studied. Identification of gene loci associated with resistance to disease was done with markers produced with 30 SSR primers pairs. The results showed that some of sunflower genotypes had well resistant to Sclerotinia disease. Population structure analysis using Structure software identified 2 subpopulations (K=2). Association analysis using TASEEL software with general and mixed linear models (GLM and MLM) identified 14 and 12 loci, respectively that have significant association with resistant genes related to Sclerotinia. ORS617 locus was commonly related to genes associated with resistance to M1 from S. minor and J1 from S. sclerotiorum. The common markers are important in sunflower breeding programs making possible simultaneously selection for several traits and producing resistant cultivars to Sclerotinia disease.
Saman Valizadeh, Ahmad Ismaili, Hadi Ahmadi, Omid Ali Akbarpour, Bijan Bajalan, Ashkboos Amini,
Volume 6, Issue 2 (3-2020)
Abstract

Wheat is mostly cultivated at rainfed condition in Iran, so, water deficit stress has much effect on yield reduction. Hence, breeding activities are necessary for introduction of wheat tolerant genotypes to water deficit stress. In order to estimate the heritability and genetic correlation between traits of 36 wheat genotypes, an experiment was conducted in two separate conditions (water stress and non-stress) based on a randomized complete blocks design with three replications. Studied traits in wheat genotypes under water stress and normal condition showed significant differences for environment, genotype and genotype× environment interaction at 1 and 5% level of probability. The results of the factor analysis showed that the 6 first factor in normal condition explained 81.13% of total variance, and the 5 first factor in stress condition explained 74.96% of total variance. Estimation of genetic correlations based on REML approach revealed that biological yield, harvest index and number of grains per spike had the highest correlation with grain yield and these characteristics are of important for selecting the varieties with high yield under non-stress and stress conditions. Estimation of heritability based on REML approach showed that number of days to heading had the highest amount of heritability in both normal and stress conditions.

Fatemeh Darvishnia, Mohammadhadi Pahlevani, Khalil Zaynali Nezhad, Khosro Azizi, Saied Bagherikia,
Volume 7, Issue 1 (9-2020)
Abstract

In order to determine the most effective indices for quantifying drought tolerance and identify genotypes that are tolerant to water stress in bread wheat, 50 bread wheat genotypes were compared in a randomized complete block design with three replications under both the non-stress dry farming with two complementary irrigation and the water stress dry farming conditions in Khorramabad, Iran. Analysis of variance showed that there was a significant difference among the genotypes in terms of all of the traits except the number of spike per area. In this study, eight indices including: Stress Tolerance Index (STI), Geometric Mean Productivity (GMP), Mean Productivity (MP), Yield Index (YI), Harmonic Mean (HM), Yield Stability Index (YSI), Stress Susceptibility Index (SSI), and Tolerance index (TOL) were calculated by using of seed yield of the genotypes under both conditions. Indices that selection based on them will improve the yield in both conditions, are considered as suitable index. STI, GMP, MP and HM were introduced as suitable index for drought resistance selection. Genotypes Shiroodi and S-90-5 were determined as the most appropriate based on 3D plot. Based on positive correlation between water stress resistance indices and yield under stress and non-stress environments, STI and GMP were the best indices. By using the Biplot method, Shiroodi, S-90-5 and Oroum genotypes were considered as high yielding potential genotypes under the both conditions. According to the results of cluster analysis, genotypes were classified into three groups based on drought tolerance indices. Graphical analysis of genotypes also showed that genotypes Shiroodi and S-90-5 were more profitable than others under both drought stress and non-drought stress conditions. These genotypes could also be used as parents caring desirable genes in the crossing programs and selection of tolerate genotypes.

Bahram Alizadeh, Abbas Rezaizad, Mohammad Yazdandoost Hamedani, Gholamhossein Shiresmaeili, Farshad Nasserghadimi, Hamid Reza Khademhamzeh,
Volume 7, Issue 2 (3-2021)
Abstract

The genotype × environment interaction is a major challenge in the study of quantitative characters because it reduces yield stability in different environments and also it complicates the interpretation of genetic experiments and makes predictions difficult. In this regard to analysis of genotype × environment interaction and determine the yield stability of winter rapeseed genotypes in cold and mild cold regions of the country, 9 lines and 4 cultivars were evaluated in a randomized complete block design with three replications in six experimental field stations (Isfahan, Hamedan, Karaj, Kermanshah, Khoy and Zarghan) during 2015–2017 growing seasons. Results of combined analysis of variance indicated that the effects of environments, genotypes and genotype × environment interaction were significant, suggesting that the genotypes responded differently in the studied environment conditions. So, there was the possibility of stability analysis. The Nafis cultivar and BAL-92-1 line with seed yields 4086 and 3829 kg.h-1, respectively, were better than overall mean and had lower ranks and rank variance than others. According to the results of stability analysis using Eberhart and Russel method, the BAL-92-1 line with higher seed yield than overall mean and regression coefficient equal one (bi=1) was identified as the genotype with high general stability for all regions. Based on the simultaneous selection method for yield and stability (YSi), the lines of HW-92-1, BAL-92-1, HW-92-1 and Nafis cultivar with the lowest values were stable, whereas lines BAL-92-4, HW-92-2, HW-92-3 and Ahmadi cultivar with highest values were unstable. Also, based on the SIIG index, the lines of HW-92-1, BAL-92-1, BAL-92-6, BAL-92-11 and Nafis cultivar with having high SIIG value as well as higher seed yield that total average were recognized as superior genotypes from the point of stability and seed yield. Finally, BAL-92-1 line with high yield and broad adaptability was selected as superior line for supplementary studies to introduce the new commercial cultivar in cold and mild cold regions of Iran.

Ali Dowlatshah, Ahmad Ismaili, Hadi Ahmadi, Karim Khademi, Daryoush Goudarzi,
Volume 7, Issue 2 (3-2021)
Abstract

Plant breeding researches is based on genetic diversity and evaluation of genetic diversity is also one of the most important steps in introduction of new cultivars. In this study, genetic diversity of 25 grass pea genotypes was studied based on randomized complete block design with three replicates in Khorramabad (Iran). Analysis of variance showed significant differences among genotypes for most of traits. Mean comparison showed that genotype IF1312 with the highest grain yield and genotypes IF1332 and IF471 with the highest dry and fresh forage yield had the best yield. Principal component analysis showed that the first 3 factors explained 62.64% of total variance. Based on cluster analysis, genotypes IF1307, IF1872 and IF471 with the highest grain and forage yield are belonged to one cluster. REML method was used to estimate genetic correlation and heritability of different traits. The highest amount of heritability (0.87) was estimated for number of immature grains and the least heritability (0.10) was estimated for total dry weight. Grain yield had a high and positive genetic correlation with forage yield, and biomass, percentage of leaf and dry forage yield also had a high and positive genetic correlation with fresh forage yield. Totally, genotype IF1307 had the best performance for most of traits compared to the other genotypes and had an acceptable forage yield among genotypes.

Ghasem Eghlima, Azizollah Kheiry, Mohsen Sanikhani, Javad Hadian, Mitra Aelaie,
Volume 8, Issue 1 (8-2021)
Abstract

Twenty-two G. glabra populations were used to study the genetic diversity of ISSR molecular markers. 12 primers were used to amplification of genomic DNA fragments of G. glabra populations. High genetic diversity based on ISSR markers was observed among individuals. A total of 130 bands were formed and 105 bands were polymorphic. The mean polymorphism percentage among studied populations was 80.47. The highest polymorphic percentages were assigned to IS23, IS21, IS9, IS13 and IS15 primers. The mean of PIC and MI were 0.347 and 2.47, respectively. The Shannon index (I) varied between 0.207-0.393 and the Nei genetic variation index (h) from 0.140 to 0.026. Darab and Solataniyeh populations showed the lowest and highest genetic diversity, respectively. The percentage of polymorphic loci was varied between 35.224 to 65.71%. The observe allele number and effective alleles number was 1.46 and 1.34, respectively. Based on the genetic distance Nei, populations Bardsir and Baft had the highest genetic similarity (0.888) and populations Bardsir and Solataniyeh had the least genetic similarity (0.132). The studied populations were grouped into three main groups by cluster analysis using UPGAM and Jaccard's similarity coefficient. The results showed that the ISSR marker is a reliable marker system for revealing a high level of polymorphism and can be used to study genetic diversity and further examinations as a subset of breeding programs in G. glabra.

Maryam Rasoulzadeh Aghdam, Reza Darvishzadeh, Ebrahim Sepehr, Hadi Alipour,
Volume 8, Issue 1 (8-2021)
Abstract

Nutrient deficiencies are important abiotic stresses that can affect plant growth and development. In this study, 76 sunflower pour lines collected from different regions of the world were evaluated in pot using some physiological traits with combined analysis of completely randomized design with three replications under optimal and phosphorus deficit conditions. Phosphorus deficiency decreased the means of all studied traits except canopy temperature. Oilseed sunflower lines were grouped into five and four clusters in each one of optimum and phosphorus deficient conditions, respectively. However, in both optimum and phosphorus deficient conditions, lines 19, 21, 27, 44 and 71 were classified into desirable cluster with high yield and yield components. Multivariate tolerance index (MFVD) for each genotype was calculated using the ratio and productivity matrices of the studied traits under optimal and phosphorus deficit conditions using principal component analysis on the resulting matrices. Based on the resulting biplot, lines 71, 74, 65, 21, 39, 7, 18 and 11 were introduced as desirable and phosphorus deficit tolerant lines.

Esmaeil Dasturani, Khalil Zaynali Nezhad, Masood Soltani Najafabadi, Mohammadhadi Pahlevani, Hassan Soltanlo, Saeed Bagherikia,
Volume 8, Issue 1 (8-2021)
Abstract

The aim of this study was to determine the haplotype groups and identify the specific alleles associated with desirable agronomic characteristics in bread wheat. For this purpose, 42 local bread wheat genotypes belong to Iran region and nine commercial cultivars along with Chinese Spring variety (reference genotype) were cultivated in the format of augmented design and evaluated based on their 13 phenotypic traits. The results of descriptive statistics showed that awn length and day to flowering had the highest and lowest phenotypic coefficient of variation, respectively. Eight microsatellite markers were used to investigate the haplotype variation of QTLs associated with phenotypic traits located on wheat chromosomes 4B and 7D. The result showed that the genotypes were classified into 13 and 6 haplotype groups according to the allelic comparison with the reference genotype on chromosome 4B and 7D, respectively. In order to investigate the relationship between traits and markers, analysis of variance was performed based on completely randomized design with unequal numbers of replications for each marker. In general, of the 13 traits studied, there was a statistically significant linkage for eight traits and for the three traits, an allele-specific was introduced simultaneously. If the breeders are interested in genotype selection that simultaneously have three desirable characteristics such as early anthesis, semi-dwarfing and a greater number of grains per spike, they can use an allele-specific (153 bp) of Xgwm149-4B marker.

Soheila Afkar, Faranak Hadi, Ali Ashraf Jafari,
Volume 8, Issue 2 (3-2022)
Abstract

Festuca is one of the largest genera of the grass family, which has more than 600 species with different ploidy levels. The aim of this study was to estimate the genetic diversity within 22 populations of three species of Festuca (Festuca arundinacea, F.rubra and F.ovina) using a seed storage protein electrophoresis pattern. These species showed a significant variation in the number of protein bands from 5-13. The highest number of bands was found in G17 (F.rubra) and the lowest number of protein bands was in G5 (F.ovina). Band number 14 was only observed in G3. It is suggested that this band can be considered as a specific band for the identification of this genotype. According to the results of AMOVA analysis, there is a high level of genetic diversity within the species rather than between species that can be due to the out-crossing nature of this genus. According to observed differences for variation parameters among the three studied species, it is concluded that they have dissimilar genetic structures. The results of cluster analysis based on seed storage protein profiles in evaluated genotypes using Euclidean distance matrix and UPGMA method showed four groups. The lowest similarity coefficient was between G14 and G15 (F.arundinacea) with G6 (F.ovina). Hence, it is suggested that they evolved from a different evolutionary process and it is suggested to use them as the parents of new synthetic varieties. The observed diversity in the seed protein pattern in the three species of Festuca, can be explained by allogamy-induced-heterozygosity, species difference or population collection from various regions.

Kaveh Sadeghi, Mohammadhadi Pahlevani, Mohsen Esmeilzadeh Moghaddam, Khalil Zaynali Nezhad,
Volume 8, Issue 2 (3-2022)
Abstract

Identifying selection indices is the most important step of a breeding project that aims to improve grain yield. The definition of the selection index is usually done by evaluating the variables in multivariate statistical methods. In the present study, the relationship between grain yield and its components in bread wheat genotypes was determined by multivariate statistical methods. The experiment was conducted in a randomized complete block design with 3 replications in the research farm of Gorgan University of Agricultural Sciences and Natural Resources in the 2018-19 crop years. Ten commercial cultivars of bread wheat along with their offspring from direct and inverse crosses in a dialysis arrangement were evaluated for morphological and phenological traits, especially grain yield and its components. The results of genotypic and phenotypic correlation coefficients showed a positive and significant correlation (at 1% probability level) between grain yield and spike length, spike weight, number of fertile tillers, number of seeds per spike, number of spikes per spike, 1000-seed weight, biological yield and harvest index. Based on the results of stepwise regression analysis, biological yield, harvest index, number of grains per main spike and main spike weight were entered into the regression model, respectively, and explained a total of 98% of the variation in grain yield. Based on the results of path analysis, biological yield had the highest direct effect on grain yield. After biological yield, the most direct effect on grain yield was related to the weight of main spike. Also, by considering eigenvalues greater than one in factor analysis, 8 hidden factors were identified that explained a total of 75.18% of the data changes. In general, it can be concluded that biological yield, harvest index, number of seeds per spike and weight of spike compared to other traits can be used as appropriate indicators in breeding programs to select high-yield genotypes in field conditions. Genotypes Alo, Ehsan♂ × Gonbad♀ and Ehsan had the highest value for the studied traits, which can be used in future breeding researches.

Jamshid Moradpour, Hadi Ahmadi, Mahmoud Bagheri, Daryoush Goudarzi,
Volume 9, Issue 1 (9-2022)
Abstract

Eggplant (Solanum melongena L.) has a high genetic variation in Iran and there are many landraces of this crop in Iran. In the present study, 15 superior genotypes of eggplant which were selected from Minab landraces accompanying two superior mother landraces (totally 17 lines) were studied for two successive years in three regions of Iran including Minab, Karaj and Jiroft. The experiment was conducted in Randomized complete block design with three replications. Finally, total yield of both years was measured and the combined analysis was done and the best line(s) for different climates were introduced using evaluation the stability of the lines via AMMI and GGE biplot procedures. Based on the results of means comparison of yield in the studied lines in each region from average of two years, GHE12 line in Minab region, SA13 line in Jiroft region and AM4, SA15 and SA5 lines in Karaj region have higher fruit yield than the other lines. Based on the results of yield comparison of the examined genotypes in each region from the average of two years of testing, GHE12 genotype in Minab region, SA13 genotype in Jiroft region and AM4, SA15 and SA5 genotypes in Karaj region had acceptable yield compared to other genotypes. However, according to the results of special adaptability and stability analysis, Y genotype for Minab region, SA13 genotype for Jiroft region and AM4 genotype for Karaj region are recommended

Razieh Ghorbani, Raheleh Ghasemzadeh, Hadi Alipour,
Volume 9, Issue 1 (9-2022)
Abstract

In order to identify loci controlling seedling morpho-physiologic characteristics in 88 bread wheat cultivars, a greenhouse experiment based on simple alpha lattice was conducted under both normal and 120 mM (12 ds/m) salt stress condition of the Faculty of Agriculture, Urmia University in 2020-2021 cropping season. Chlorophyll a, b and carotenoid content, proline, plant fresh and dry weight, plant height and leaf relative water content (RWC), Na+, K+ and K+/Na+ concentrations were measured. After genotyping by sequencing with Ion Torrent technology and removal of SNPs with more than 20% of missing data and minor allele frequency less than 5%, a total of 5869 SNP markers were identified. Based on association mapping with the mixed linear model (MLM) method, a total of 25 marker-trait associations were detected under normal conditions. The A and D genomes had the highest and lowest number of significant marker-trait associations (MTAs). Among the studied traits under normal conditions, chlorophyll a had the highest number of MTAs on 1A, 3B, 3D, 5B, 7A chromosomes with eight MTAs. A total of 21 MTAs were identified under salt stress conditions which the genome B and D had the highest and lowest number of MTAs, respectively. Five MTAs were identified for plant fresh weight, which were located on chromosomes 4A and 6B. The results of this study provide valuable information about the loci associated with the studied traits, which can be used in marker assisted selection in wheat breeding programs after confirmation in biparental populations and additional experiments.
 


Page 1 from 2    
First
Previous
1
 

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.08 seconds with 46 queries by YEKTAWEB 4642