|
|
|
Search published articles |
|
|
Showing 8 results for Sabouri
Ensieh Taheri, Reza Shirzadian-Khorramabad, Gholamreza Sharifi-Sirchi, Atefeh Sabouri, Khadijeh Abbaszadeh, Volume 2, Issue 2 (3-2016)
Abstract
Yarrow plant or plain short type yarrow, known as Achillea wilhelmsii C. kock, belongs to Asteraceae family. The present study was conducted in order to evaluate three different yarrow populations for determination of their genetic relationship, using morphological traits in the form of nested design as completely randomized with ten replications. General heritability of all traits ranged from 98 to 100, indicating a high heritability for these traits. The highest coefficient of genetic variation belonged to root diameter (1.66), indicating the existence of hifh diversity among genotypes. The lowest coefficient of genetic variation belonged to leaf length to width ratio (0.36), suggesting a low level of variation for this character. Based on PCA analysis, the first two components justified almost 90 percent of total variations. The three populations were nearly separated according to biplot analysis. Also, cluster analysis confirmed the biplot results and the populations were identified as three separated clusters which reflect the apparent difference among yarrow populations. The results of this study showed a wide genetic diversity for evaluated populations with regarding measured traits in Hormozgan province. Aforementioned findings indicated a dormant potentials of native yarrow populaton in south Iran and high value of these resources and obviously more attention need to be paid to identify, maintenance, assessing and apply them in breeding programs.
Atefeh Kaviani Charati, Hossein Sabouri, Hossein Ali Fallahi, Eisa Jorjani, Volume 3, Issue 1 (9-2016)
Abstract
Abstract In order to genetic analysis of spike characteristics in barley, an experiment was conducted with 100 F3 and F4 barley families derived from Badia × Komino cross at Research Farm college of Agricultural University of Gonbad Kavous (Iran) based on randomized complete block design with three replications. Agronomic traits such as spike length, number of seeds per spike, total of spike, total weight of spike, grain length and grain diameter were measured. Linkage map with 7 SSR and 69 polymorphic alleles of iPBS markers were prepared which covered 632.2 cM of barley genome. QTL analysis was performed based on the method of composite interval mapping (CIM). Ten QTLs (with additive effect ranged from 127.07 for spike number to -0.625 mm for grain length) were detected. Phenotypic variance explained by QTLs ranged from 10.9 to 12.9 percent, which the highest related to spike length in F3 generation and the lowest related to the total number of spikes in F3 generation and the total weight of spike in F4 generation. All detected QTL were major effects and after validation can be used in breeding programs and marker-assisted selection.
Halbibi Badirdast, Seyed Yahya Salehi-Lisar, Hossain Sabouri, Ali Movafeghi, Ebrahim Gholamalalipour Alamdari, Volume 5, Issue 1 (9-2018)
Abstract
One of the main objectives of plant breeding is defining the relationship between genotype and phenotype. Nowadays, molecular markers provide powerful tools to evaluate this relationship for plant breeders. In this study, genetic diversity of 112 rice lines was evaluated by 20 pairs of SSR markers which linked to drought tolerant alleles. Totally, 77 polymorphic alleles with mean of 3.85 alleles per primer pairs were amplified. The minimum number of alleles was belonged to RM28199 and RM212 markers with 2 alleles, and the maximum number of alleles was belonged to RM72 marker with 6 alleles. The range of PIC for the examined markers was 0.30 to 0.72 and the mean of PIC was 0.58. The maximum amount of PIC was belonged to RM85 and RM20A markers and the minimum of PIC was belonged to RM28099 marker. Considering the gene diversity coeficient, RM28099 and RM 85 markers had minimum (0.33) and maximum (0.76) diversity, respectively. The stepwise regression analysis of the microsatellite data and morphologic traits identified 62 and 54 informative alleles for the evaluated traits in flooding and drought conditions, respectivly. Cluster analysis based on molecular data divided the genotypes into 7 groups. Considering the appropriate distribution of amplified DNA by the studied markers in this study, markers that have high separation power and high association with important agronomic traits in drought stress condition (if further experiments confirmed them), could be employed in plant breeding programs of drought stress.
Elham Nasiri, Atefeh Sabouri, Akbar Forghani, Masoud Esfahani, Volume 5, Issue 2 (3-2019)
Abstract
In order to select the best parents for crossings, plant breeders seek varieties or genotypes with highest genetic dissimilarities. This can be achieved by measuring the similarities among genotypes, using multivariate analysis methods such as cluster analysis. This study aimed to group 50 aerobic and lowland rice genotypes based on biochemical characteristics including Iron, Zinc, Manganese and protein, and their linked DNA markers. According to the cluster analysis results using Ward method, the genotypes were assigned to four groups. The third group, as the smallest group including three genotypes (IR82635-B-B-82-2, Caiapo, and Gohar), had the highest value for these micronutrients. Their mean value for Iron, Zinc, Manganese, and protein were 32.39, 34.15, 25.66 mg/kg and 6.71%, respectively. Also, all genotypes were classified into two main groups based on microsatellite markers information, that according to QTL mapping studies these markers were identified as linked to elements. So, the most of non-local genotypes and aerobic rice cultivars were assigned in a separate group. The correlation between Euclidean distance of elements and protein matrix and genetic similarity matrix (Nie) using Mental correlation test was estimated significant (p<0.01) that can be evidence of a genetic relationship between the SSR markers and genome controlling regions of elements in this population.
Seyede Minoo Mirarab Razi, Reza Shirzadian-Khorramabad2, Hossein Sabouri, Babak Rabiei, Hossein Hosseini Moghadam5, Volume 6, Issue 1 (9-2019)
Abstract
Salinity is an important limiting factor in the production of more plants, including rice. Due to the limited amount of cultivated area, identification of tolerant genotypes to environmental stresses and especially salinity is very important. The aim of this study was to investigate the genetic diversity among 114 recombinant lines derived from the intersection of local Tarom × Khazar cultivars under non stress conditions and salinity levels of 8 dS/m in reproductive stage in a completely randomized design. Combined analysis of variance showed that the differences between lines was significant for all traits. Genotypic variation coefficients also showed that the highest genetic variation among the evaluated recombinant lines was related to the number of panicles per plant. In contrast, days to 50% flowering showed the least genetic variation among these lines. In non stress and stress conditions, the highest genotypic and phenotypic correlation coefficient was observed between grain yield and number of fill grain in seedlings. Based on the cluster analysis of grain yield, the lines were classified into four groups under normal conditions and were classified into three groups under salinity conditions. The third-party lines in both cases had a higher average than the overall average. In general, the results of this study showed that there is a significant genetic variation between the studied lines in terms of salt tolerance and this variety can be used in subsequent corrective programs. Accordingly, lines 83, 81, 56, 39, 37 and 89 were the most sensitive lines and lines 107, 101, 16, 100, 84, 98, 47, 32, 14, 29, 95, 63, 5, 49, 92 and 10 were the most tolerant lines to salinity stresses of 8 dS/m and they also had higher yields and yield components. Strained lines are proposed directly for cultivating saline or for transferring salt tolerance to commercial cultivars through future breeding programs.
Mohammad Reza Jafarzadeh Razmi, Saeid Navabpour, Hossein Sabouri, Seyedeh Sanaz Ramezanpour, Volume 6, Issue 2 (3-2020)
Abstract
In order to analyze the genetic components of agronomic traits among 116 F9 recombinant lines derived from crosses of Ahlamitarom × Sepidroud rice cultivars, an experiment was conducted as a randomized complete block design in research farm of Gonbad Kavous University of Agriculture with three replications in 2016 and 2017. Genetic linkage map provided with 80 SSR markers, 28 iPBS Markers (79 polymorphic alleles), 7 IRAP markers (17 polymorphic alleles) and 26 ISSR markers (70 polymorphic alleles), which covered 1275.4 cM of the rice genome. QTL analysis was performed by Composite Interval Mapping. In two years, 15 QTLs detected for the studied traits. The additive effected varied from 6.725 g for grain weight up to -85.626 g for grain weight. Also, R2 for the detected QTLs explained from 11.3% to 20% of the total variation. The highest R2 was related to grain weight in the first year of experiment. Among the detected QTLs, qGWs on chromosome 1, were found to be stable and large effector QTLs for rice (Oryza sativa L.) grain weight, and can be used in marker-assisted breeding and selection programs after validation.
Abbas Saberi Kuchesfahani, Atefeh Sabouri, Amin Abedi, Ali Aalami, Teimour Razavipour, Volume 7, Issue 1 (9-2020)
Abstract
water stress and, in this regard, it is necessary to improve rice cultivars to tolerance to environmental stresses. In this research 154 recombinant inbred lines (F9) derived from a cross between Shah-Pasand and IR28 in three conditions (non-stress, osmotic stress -0.3 and -0.6 Mpa induced through polyethylene glycol-6000) were evaluated as a factorial experiment in randomized complete block design. In addition, for molecular polymorphism experiment, 110 SSR and EST-SSR markers were assessed on parents of population and among them, 41 markers identified which had proper polymorphism between two parents. The regression analysis between germination components and molecular markers revealed the most coefficient of determination were found in RM211 for allometric coefficient (17%) under non-stress, RMES10-1 for Plumule dry weight (18%) under -0.3 MPa; and RM273 for germination uniformity (22.7%) under -0.6 MPa. RM3496, RM452, and RMES6-1 in three conditions had the most number of significant relationships with six, three and eight traits, respectively, and they can be a suitable candidate for simultaneous improvement of several traits in breeding programs of marker-assisted selection. In addition, after the identification of significant markers associated with germination components, the closest genes to these markers were identified using bioinformatic analysis, and the analysis of their expression were performed by rice transcriptome database. According to the results, the maximum gene expression pattern under drought stress and under non-stress conditions were related to loci LOC_Os01g57220 and LOC_Os01g26039, respectively and this information could be applied in breeding programs.
Mahnaz Katouzi, Saeid Navabpour, Hossein Sabouri , Ali Akbar Ebadi, Volume 7, Issue 2 (3-2021)
Abstract
In order to identify QTLs controlling agronomically traits, landrace Tarom and rice Tarom mutant were crossed. SSR, ISSR, iPBS and IRAP markers were amplified in 250 F2 individuals to prepare the linkage map. Number of tillers, 100 grain weight, number of filled grains, number of unfilled grains, plant height, panicle length, number of branches, stem diameter, grain length, grain width, grain shape, straw weight, days to maturity, flag leaf length and flag leaf width were measured for 250 individuals. The linkage map covered 970.9 cM of rice genome. The distance between two adjacent markers was calculated to be 12.77 cM. Based on the results, a total of 13 QTLs were identified for the evaluated traits. For all studied traits, alleles transferred from the parents to the QTLs detected increased grain yield. Most QTLs were detected for days to flowering. Three QTLs were located on chromosomes 10 and 4 (two QTLs) for days to flowering. qLDF-4a and qLDF-4b had a negative additive effect and the parent alleles of the mutant landrace Tarom reduced the number of days to flowering. These QTLs explained 11.6% of the phenotypic variance. Since the population under study was derived from a cross between landrace and mutant Tarom cultivars and the resulting population varied only in the mutated genes; so, the QTLs detected in this study were more accurate in location and expression levels, and after validation of them, they could be recommended for marker assistant selection breeding programs.
|
|