[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 2 results for Rahnama

Maryam Javedan Asl, Hamid Rajabi Memari, Daryoosh Nabati Ahmadi, Afrasiyab Rahnama Ghahfarokhi,
Volume 2, Issue 1 (5-2015)
Abstract

Yarrow (Achillea millefolium) is an herbaceous and perennial plant species which belongs to the Asteraceae family. Yarrow's essential oil has different compounds of monoterpene and sesquiterpens, which its main constituents are pinene and linalool. These compunds have anti-microbial and anti-pest activities and also can be used in the food industry, perfumery and cosmetics.The aim of the present study was to use the degenerate primers approach in order to isolate Pinene synthase and linalool synthase genes from Yarrow plant. Up to date, there is no any report on the availability of these genes in the world gene bank. In this investigation the total RNA was extracted from Yarrow then pinene synthase and linalool synthase genes were isolated, using degenerate primers and Polymerase Chain Reaction (PCR). PCR amplified two bands of 250 bp and 720 bp. The sequence data were compared with NCBI gene bank data. The results of diversity study among varieties and families based on Pis and Lis genes showed most similarity between Achillea and Artemisia plants. Also this similarity was seen between Asteraceae and Lamiaceae families and these families grouped together same group. These results also showed a relatively high similarity of Pis and Lis with some other plants which confirmed sequencing data.


Sahar Dashchi, Hassan Rahnama, Kianoosh Cheghamirza, Katayun Zamani,
Volume 7, Issue 2 (3-2021)
Abstract

In oilseed crops, a number of genes involved in the production of triacylglycerol have been identified that changes in their expression have increase the seed oil content. WRI1 and LPAAT are key genes in this synthetic pathway that their overexpression can increase the oil content. In this study, the expression vectors carrying WRI1 and LPAAT genes were designed and constructed for genetic transformation of tobacco (Nicotiana tabaccum) plants. The synthetic WRI1 and LPAAT genes were isolated from the PGH.WRI1 and PGH.LPAAT cloning vector using specific restriction enzymes and then cloned in the PGH.O3.2.2 intermediate vector under the control of SBP and Napin promoters and E9 terminator. Finally, the genetic cassettes were transferred to the plant transformation pBin19 binary vector. The resulting constructs were transferred to Agrobacterium tumefacience strain EHA105 and were used for genetic transformation of tobacco plants. Molecular analysis of transgenic plants confirmed the presence and activity of WRI1 and LPAAT genes. Seeds from transgenic plants were selected on the medium containing kanamycin and developed strong and healthy seedlings.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 28 queries by YEKTAWEB 4657