[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 9 results for Mohsen

Akbar Shabani, Alireza Zebarjadi, Ali Mostafaei, Saeidi Mohsen, Seyad Saeid Poordad,
Volume 3, Issue 1 (9-2016)
Abstract

Plants are capable of responding to environmental stresses by activating their adaptation mechanisms and their response to environmental factors by changing their gene expression. Drought stress is considered as the most important abiotic stress in agriculture. In this regard, in present research, proteomics techniques used to detect proteins were responding to drought stress. To select drought susceptible genotype, 64 chickpea genotypes were assessed by simple lattice design 8×8 at the Sararood station (Iran) and then in the greenhouse of College of Agriculture and Natural Resources of Kermanshah Razi University (Iran) in three levels of stress including normal, medium and intensive stress conditions at poding stage. Finally, SAR 80 JI 09 K12-8 genotype was selected as susceptible to drought stress. Then, the evaluations consisted of a leaf proteome induced under drought stress conditions were performed. To study and identify the proteins associated with drought, total protein was extracted from the leaves by TCA- acetone method and isolated in the first dimension by IPG gels with pH gradient 7-4 and in second dimension after by 12.5% concentration polyacrylamide gels. Therefore, in the drought susceptible genotype the value of each spot was used as a standard amount. Protein spots on the gel were scanned and identified by using Image Master 2D Platinum of Melanie 6.0 software. The results of two-dimensional gel analysis and protein identification of drought susceptible genotypes showed that leaf proteome pattern has been widely changed in drought stress condition. In susceptible genotype, 212 protein spots repeatable were identified. 10 spots were detected by using MALDI-TOF-TOF mass spectrometry which were divided in different groups based on response to drought stress in biological cycles.
Mohsen Barajehfard, Mohammad Reza Siahpoosh, Mohammad Modarresi,
Volume 3, Issue 2 (3-2017)
Abstract

In order to identify QTLs associated with stemlet and rootlet growth in the early stages of germination of wheat, 144 recombinant inbred lines derived from the cross of Kaz and Mantana were evaluated in a completely randomized design. The linkage map using composite interval by 234 microsatellite (SSR) primers and 267 AFLP loci have been already prepared in this population which covered 20 chromosomes of wheat. For root length, 1, 2 and 2 QTLs were located on 4D, 4B and 2D chromosomes, respectively. Two QTLs of rootlet length was located on 6B and 3D chromosomes. The QTLs of rootlet number were identified on 4A, 5A and 3B chromosomes. For each of stemlet dry weight (SDW) and rootlet dry weight (RDW) traits only one QTL identified on 4A and 3D chromosomes, respectively. Overall, for SDW to RDW ratio on 2D and 3D chromosomes, three QTLs were located. The QTLs of stemlet wet weight (SWW) were detected on 6B and 2B chromosomes. On 1B, 2D and 6B chromosoms, three QTLs were recognized for SWW to RWW ratio. For all traits, the range of LOD = 2.04-6.34 and R2 =5.11-19.58 were calculated. The highest amount of LOD and R2 (5.11 and 19.58, respectively) were obtained for rootlet length QTL (QSL-chpgu-4D). The least distance to the nearest adjacent marker (AFgcCGb marker) was 0.005 Centi-Morgan which belonged to rootlet length QTL (QRL-chpgu-3D) on 3D chromosome.
Arash Salami, Mohammadhadi Pahlevani, Khalil Zenalinezhad, Mohsen Esmaeilzadeh Moghaddam,
Volume 5, Issue 1 (9-2018)
Abstract

Collection and conservation of germplasm, particularly for landraces of important agronomically species and organizing their information, cause to continuity of their usefulness and reduce the risk of their genetic erosion. In this experiment, 10 Iranian wheat landraces along with the Chinese Spring cultivar, as control, were used to assess inter and intra populations variation by using ISSR molecular markers and morphological traits. Evaluation of populations in terms of height, spike length, awn length, number of spike nodes, number of grains per spike, flag leaf length and grain weight showed that there were considerable variation among landraces. Also, in some landraces like KhorramAbad and Ardabil, intra population diversity for some of these traits, such as plant height and length of awn, was obvious. Evaluation of the landraces for ISSR markers showed that among 99 scored bands, 78 bands were polymorphic. Percent of polymorphism with mean of 81.88 % was varied from 53.33 for primer of ISSR-4 to 100% for primers of ISSR-9, ISSR-14, ISSR-5 and ISSR-7. Average PIC of the landraces was estimated 3.0. Results of this study showed that there was considerable intra population diversity for the ISSR markers in landraces of KhorramAbad, Maragheh and Torbat-e-Heydarieh however, a little diversity for Khoy, Ahwaz, Isfahan, Mashad, Urmia, Shiraz and Ardabil was observed. Results of this study showed that there is inter and intra genetic diversity within Iranian landraces of wheat with different levels and these landraces can be used as basic population for extraction of pure lines.

Azam Moayedinezhad, Behrooz Mohammadparast, Ghasem Hosseini Salekdeh, Ehsan Mohsenifard, Mohammad Ali Nejatian,
Volume 6, Issue 1 (9-2019)
Abstract

MicroRNAs (miRNAs), as a group of non-coding small RNAs, play key roles in regulating the growth, development and response of plants to various stresses. In this study, the expression patterns of three drought responsive miRNAs (miR159c, miR160a,b and miR169v) were compared in both drought tolerant (Yaghuti) and drought sensitive (Bidanesefid) grapevine cultivars using qRT-PCR under drought stress conditions. For identification the potential regulatory elements in the promoter regions of investigated miRNAs, the upstream sequences of their pre-miRNAs were analyzed using PlantCARE database. Drought related motifs such as ABREs and ABSs were identified in the regulatory regions of investigated miRNAs. Three transcription factors related to Auxin and ABA signaling were identified as the most important target genes for investigated miRNAs. The expression patterns of studied miRNAs were different affected from miRNA kind and grapevine cultivar. So, the expression of miR159 remained unchanged in Bidanesefid and increased in Yaghuti cultivar under drought stress condition, but the expression of miR160 and miR169 changed reversely in both cultivars. Cultivar dependent expression showed that miRNA responses to drought stress are also different among very relative genotypes with different drought susceptibility. Generally, considering the role of the potential target genes of investigated miRNAs, it seems that the change in the expression of evaluated miRNAs ultimately leads to the better tolerate of drought stress in Yaghuti cultivar.

Seyed Sajad Sohrabi, Seyyed Mohsen Sohrabi, Seyed Karim Mousavi, Mohsen Mohammadi,
Volume 7, Issue 1 (9-2020)
Abstract

Saffron (Crocus sativus L.) is the most valuable and expensive spice in the world. The stigmas of saffron are the source of valuable apocarotenoids such as crocin, picrocrocin and safranal. transcriptomic and expression studies of genes are important steps in investigating of secondary metabolites in plants. One of the important prerequisites for such studies is the existence of reliable and stable reference genes to normalize the expression of other genes. In the present study, eight reference genes were identified and isolated using transcriptome of saffron and their expression stability was evaluated by nonparametric statistics and methods. The results of amplification and sequencing showed accurate identification of eight reference genes Actin, EF1, GAPDH, H3, MDH, TBP, UBC and UBQ. The expression stability evaluation revealed that MDH and UBQ genes had the highest stability among different saffron tissues and TBP had the lowest stability among them. In this study, for first time, eight reference genes were isolated from saffron and their expression stability was evaluated. The reference genes identified in the present study can be used as stable genes to normalize gene expression in transcriptomic and expression studies of saffron plant.  

Ghasem Eghlima, Azizollah Kheiry, Mohsen Sanikhani, Javad Hadian, Mitra Aelaie,
Volume 8, Issue 1 (8-2021)
Abstract

Twenty-two G. glabra populations were used to study the genetic diversity of ISSR molecular markers. 12 primers were used to amplification of genomic DNA fragments of G. glabra populations. High genetic diversity based on ISSR markers was observed among individuals. A total of 130 bands were formed and 105 bands were polymorphic. The mean polymorphism percentage among studied populations was 80.47. The highest polymorphic percentages were assigned to IS23, IS21, IS9, IS13 and IS15 primers. The mean of PIC and MI were 0.347 and 2.47, respectively. The Shannon index (I) varied between 0.207-0.393 and the Nei genetic variation index (h) from 0.140 to 0.026. Darab and Solataniyeh populations showed the lowest and highest genetic diversity, respectively. The percentage of polymorphic loci was varied between 35.224 to 65.71%. The observe allele number and effective alleles number was 1.46 and 1.34, respectively. Based on the genetic distance Nei, populations Bardsir and Baft had the highest genetic similarity (0.888) and populations Bardsir and Solataniyeh had the least genetic similarity (0.132). The studied populations were grouped into three main groups by cluster analysis using UPGAM and Jaccard's similarity coefficient. The results showed that the ISSR marker is a reliable marker system for revealing a high level of polymorphism and can be used to study genetic diversity and further examinations as a subset of breeding programs in G. glabra.

Reza Mir Derikvand, Seyede Sajad Sohrabi, Seyyed Mohsen Sohrabi, Kamran Samiei,
Volume 8, Issue 2 (3-2022)
Abstract


Kaveh Sadeghi, Mohammadhadi Pahlevani, Mohsen Esmeilzadeh Moghaddam, Khalil Zaynali Nezhad,
Volume 8, Issue 2 (3-2022)
Abstract

Identifying selection indices is the most important step of a breeding project that aims to improve grain yield. The definition of the selection index is usually done by evaluating the variables in multivariate statistical methods. In the present study, the relationship between grain yield and its components in bread wheat genotypes was determined by multivariate statistical methods. The experiment was conducted in a randomized complete block design with 3 replications in the research farm of Gorgan University of Agricultural Sciences and Natural Resources in the 2018-19 crop years. Ten commercial cultivars of bread wheat along with their offspring from direct and inverse crosses in a dialysis arrangement were evaluated for morphological and phenological traits, especially grain yield and its components. The results of genotypic and phenotypic correlation coefficients showed a positive and significant correlation (at 1% probability level) between grain yield and spike length, spike weight, number of fertile tillers, number of seeds per spike, number of spikes per spike, 1000-seed weight, biological yield and harvest index. Based on the results of stepwise regression analysis, biological yield, harvest index, number of grains per main spike and main spike weight were entered into the regression model, respectively, and explained a total of 98% of the variation in grain yield. Based on the results of path analysis, biological yield had the highest direct effect on grain yield. After biological yield, the most direct effect on grain yield was related to the weight of main spike. Also, by considering eigenvalues greater than one in factor analysis, 8 hidden factors were identified that explained a total of 75.18% of the data changes. In general, it can be concluded that biological yield, harvest index, number of seeds per spike and weight of spike compared to other traits can be used as appropriate indicators in breeding programs to select high-yield genotypes in field conditions. Genotypes Alo, Ehsan♂ × Gonbad♀ and Ehsan had the highest value for the studied traits, which can be used in future breeding researches.

Seyyed Mohsen Sohrabi, Seyed Karim Mousavi,
Volume 9, Issue 2 (3-2023)
Abstract

Chickpea (Cicer arietinum L.) is one of the most important crops in the world. After bean and pea, chickpea is the most important cold season legume. Weeds are one of the most important threats to chickpea production worldwide. Due to the sensitivity of chickpea to herbicides, the majority of herbicides are used pre-emergence and the use of post-emergence herbicides is limited, and therefore weeds cause a significant decrease in chickpea yield. Therefore, herbicide-tolerant chickpea cultivars that have a higher flexibility for post-emergence herbicide application are needed to improve the chickpea yield. In this study, using seed bioassay and PCR method, resistance mechanism of Iranian chickpea cultivars to Pursuit herbicide was investigated. The results showed a significant genotypic and phenotypic variation among Iranian chickpea cultivars for tolerance to the Pursuit herbicide. The results did not show a difference between the target genes of Pursuit herbicide, ALS1 and ALS2, in all investigated cultivars with that of the reference sequences in the GenBank. This proves that the resistance observed in different chickpea cultivars to the herbicide Pursuit is not associated with the target site resistance mechanism and probably follows a non-target resistance mechanism. The superior genotypes of this study (Bivanij, Aksou, Mansour, TDS-Maragheh90-400 and TDS-Maragheh90-358) can be recommended to farmers and also suggested as parents to produce natural herbicide resistant chickpea plants in breeding programs.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 35 queries by YEKTAWEB 4657