|
|
|
Search published articles |
|
|
Showing 5 results for Karimi
Davoud Sadeghzadeh-Ahari, Peyman Sharifi, Rahmatollah Karimizadeh, Mohtasham Mohammadi, Volume 2, Issue 1 (5-2015)
Abstract
To estimate the genetic components and the mode of inheritance for some morphological traits, six rainfed durum wheat genotypes (Chehel daneh, Gerdish, Zardak, Syrian-1, Waha and Knd1149//68/ward) and their complete diallel progenies were grown in a randomized complete blocks design with two replications in 2005-06 cropping season in Maragheh Dryland Agricultural Research Station. Results of diallel analysis revealed that additive variance were important for inheritance of grain yield, number of grain per spike, spike length and number of fertile tiller than dominance variance. The positive value of ‘F’, indicated that there were excess of dominant alleles in comparison to recessive ones in the parents for all of the studied traits. The average degree of dominance (H1/D) 0.5 showed partial dominance for grain yield, number of grain per spike, spike length, 100 grains weight and number of fertile tiller and over-dominance for peduncle length. Graphic analysis indicated that increase of grain yield, number of grain per spike, spike length, 100 grains weight and number of fertile tiller were under the control of combination of recessive and dominance alleles. Predominance of additive effects for grain yield demonstrated that breeding methods based on selection may be advantageous in improving of this trait. The highest value of this trait relevant to Gerdish (10.33 g/plant), therefore this genotype can be used as cross parent in breeding programs for receiving to lines with high yield and yield components. The cross of Waha × Knd1149//68/ward with high value of GY and GCA for this trait can be used as a suitable cross for hybrid production.
M Mohtasham Mohammadi, K Rahmatollah Karimizadeh, H Tahmaseb Hosseinpour, G Hasan Ghojogh, S Kamal Shahbazi, S Peyman Sharifi, Volume 4, Issue 2 (3-2018)
Abstract
Breeding of adapted and variation germplasm can be a main element for strength of research political in stable agricultture system. This is achived by targeting variety selection onto different growing environments under natural heat and drought stresses. To realize this, breeding programs usually undertake a rigorous genotypes performance evaluation across locations and years mostly at the final stage of variety development process. More accurate selection of wheat genotypes requires reducing environmental effects for explaining of their genetic potential with appropriate analysis of genotype × environment. In this research, 18 improved bread wheat genotypes were planted in randomized compelet block design with 4 replications in Gachsaran, Khoramabad, Gonbad, Moghan and Ilam stations during three years (2011-2014). Simple and combined analysis variance were done on grain yield data. Due to significant interaction effects for Year × locatin and genotype × year × locatin, yield stability of considered genotypes were analysed using some parameteric and nonparametric methods. Obtained results showed genotypes no. 10 and 17 with 3107 and 3028 kg/ha had the highest grain yield. Based on parametric statistics: CV i, , , ،, MS Y/L and MSPI and non-paramertric statistics: , , , Top, Mid, Low ،, R-Sum, and SDR, G10 had more yield stability. More over, G12 and G17 showed suitable yiled stability among high production genotypes. Earliness Genotypes 10 and 17 lines had optimum plant height and partially high thousand kernel weight.
Rahmatollah Karimizadeh, Tahmasb Hosseinpour, Jabbar Alt Jafarby, Kamal Shahbazi Homonlo, Mohammad Armion, Volume 7, Issue 2 (3-2021)
Abstract
There are different methods for study the genotype × environment interactions and determining stable genotypes such as parametric, non-parametric and multivariate methods. In this research, 19 selective genotypes from advanced trials of durum wheat at 2011-2012 agronomic year, have been cultivated with Dehdasht check cultivar for three growing years (2012-2015) in five locations (including Gachsaran, Gonbad, Khorramabad, Moghan and Ilam) in a randomized complete block design with four replications in each location. Combined analysis of variance indicated significant effects of genotype, environment and interactions of genotype × environment. In parametric uni-variate methods, genotypes 7, 12, 18 and 20 were determined as stable genotypes. In non-parametric uni-variate methods, genotypes 2, 7, 12, 13, 18, 19 and 20 had the lowest genotype × environment interaction and they were determined as stable genotypes. In AMMI method, genotypes 2, 7, 12, 19 and 20 had the lowest rank in different environments and highest grain yield, and these genotypes seems more stable genotypes. It can be concluded that genotypes 7, 12, 18 and 20 could be considered as promising genotypes and candidate for introducing new durum cultivar.
Rahmatollah Karimizadeh, Tahmasp Hosseinpour, Peyman Sharifi, Jabar Alt Jafarby, Kamal Shahbazi, Kavoos Keshavarzi, Volume 8, Issue 1 (8-2021)
Abstract
Durum wheat (Triticum turgidum L.), like most other crops, is affected by various stresses. Therefore, cultivars that, in addition to the ability to produce higher yields, can maintain their yield potential in different years and locations are considered superior cultivars. In order to obtain high-yielding and stable genotypes of durum wheat, 16 lines with two control cultivars Dehdasht and Seymareh were evaluated in four locations of Gachsaran, Gonbad, Khorramabad and Moghan based on randomized complete block design with four replications in three cropping seasons (2013-2016). Combined analysis of variance indicated a significant effect of genotype, environment and genotype by environment interaction. Genotypes G6 and G18 had the highest and lowest grain yield, respectively. Based on parametric methods, genotypes G3, G5, G15, G13 and G16 and based on non-parametric methods, genotypes G1, G3, G4, G5, G15 and G3 were the most stable genotypes. The most stable genotypes based on the total Kang sum-rank were genotypes G15, G5, G6 and G1. The Selection index of ideal genotype (SIIG) was used to integrate all indices into one index, based on which genotypes G5 and G15 were the superior genotypes with the highest SIIG index and grain yield. Based on all indices, genotypes G5 and G15 were the most stable genotype in terms of grain yield and can be used in cultivar introduction processes.
Samira Karimi, Maghsoud Pazhouhandeh, Kambiz Azizpour, Volume 9, Issue 1 (9-2022)
Abstract
Transgenic plants and their products are being developed day by day due to their improved characteristics, and it is necessary to evaluate the safety of these plants before releasing them. Hence, the importance of the issue of biosafety of transgenic plants and the use of their products has led the regulatory agencies to create some laws called substantial equivalence. based on that, the essential nutrients of transgenic plants are examined and compared with the control. The present study aimed to compare the transgenic potato line F (salinity-resistant) with non-transgenic Agria cultivar plants. The salt resistant potato line was produced by transferring Arabidopsis SOS3 gene to potato (Agria variety) and its resistance was confirmed. First, the presence of AtSOS3 gene in F-line plants was confirmed and then the substantial equivalent experiments were performed by comparing the production of proline, soluble sugars, carotenoids and chlorophylls a and b, the relative expression of Catalase1 (CAT1) and AtSOS3 gene between F and non-transgenic WT Agria plants. Based on evaluations of physiological traits and some metabolites (proline content, soluble sugars, carotenoids and chlorophylls a and b) and morphological traits (plant height, dry and fresh weight of plant) between line F and WT, no significant difference was observed. The number of microbiome colonies around the root in the transgenic F and non-transgenic WT plants was a non-significant difference, which indicates that the transgenic line has no threatening effects on the environment and human pathogenicity. The relative expression of AtSOS3 and Catalase1 genes in line F had higher values than WT. The reason for such increase in the expression of Catalase1 is the activation of plant defense mechanisms against stress. Finally, the results of the evaluations proved the equality of line F and WT
|
|