|
|
|
|
Search published articles |
|
|
Showing 2 results for Kahrizi
Farshad Fallah, Danial Kahrizi, Abbas Rezaeizad, Alireza Zebarzadi, Lila Zarei, Volume 6, Issue 2 (3-2020)
Abstract
After cereals, oilseeds are the second-largest food reserves in the world. According to available statistics, more than 95 percent of Iran's oil needs are imported. Given the growing need for edible oils in Iran, it is important to identify fatty acids in the oilseed crops. Camelina sativa L. is an oil-medicinal plant and belongs to the Brassicaceae family that requires very little water and fertilizers. It is known as a low input plant. In this study, to analyze the fatty acid profile for breeding programs and specific industries, 137 doubled haploid camelina lines were evaluated in terms of fatty acid composition and variability of fatty acids trait, to estimate phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV), heritability, and expected genetic advance. The determination of fatty acid by gas chromatography showed that 18 types of fatty acids were detectable in camelina seed oil. It is shown that the two fatty acids (C14:0 and C16:1) have the highest PCV and GCV. The highest heritability for C20:2, C20:3 and C20:0 fatty acids was estimated 98.92, 98.59 and 96.49 percent, respectively. In this study, two lines with linoleic acid of 35.81-36.67% and four lines with values ranged from 22.08-23.00% were introduced. The ratio of omega-6 to omega-3 (0.479-0.759) was obtained in the studied lines.
Seyede Maryam Seyed Seyed Hassan Pour, Leila Nejadsadeghi, Zahra Sadat Shobbar, Danial Kahrizi, Volume 10, Issue 2 (2-2024)
Abstract
Camelina )Camelina sativa (is an annual, self-pollinating, allohexaploid plant with diploid inheritance belonging to the Brassicaceae family. Camelina exhibits a remarkable degree of similarity to the model plant Arabidopsis thaliana. WRKY transcription factors are among important gene families in plants that play crucial roles in regulating growth and development and in response to diverse stresses. In this research, using bioinformatics analysis and databases, members of the WRKY gene family were identified and their various characteristics were investigated. Overall, the genome of the Camelina plant was found to harbor 214 members of the WRKY gene family. All 214 WRKY genes were found to possess the conserved WRKY functional domain, along with a variety of motifs within their structural composition. Phylogenetic analysis divided the identified members of Camelina WRKY genes into four main groups. Examination of the chromosomal positions revealed that the 214 identified WRKY genes exhibited an uneven distribution across the chromosomes. In order to validate the identified genes, the expression of two genes (Csa11g065620 and Csa07g035970) orthologs of two genes involved in drought stress in Arabidopsis (WRKY8 and WRKY57), were investigated in a drought tolerant (DH 91) and a drought sensitive (DH 101) lines. The results of the gene expression analysis showed that both genes had high expression in drought stress conditions in tolerant line in comparison to normal conditions, whereas no significant expression was found in drought sensitive line. The findings of the present study offer valuable insights for evolutionary investigations and enhance our understanding of the functional roles of the WRKY gene family in Camelina, thereby laying a foundation for future research endeavors in this field.
|
|
|
|
|
|