[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 3 results for Gholizadeh

Amir Gholizadeh, Hamid Dehghani, Mostafa Khodadadi,
Volume 5, Issue 1 (9-2018)
Abstract

In any breeding program, knowledge of the nature of gene action involved in the inheritance of traits is a basic requirement. In this research, diallel crosses progenies of six coriander landrace were evaluated in F1 and F2 generations. The genotypes were evaluated in different irrigation conditions in three separate experiments, in which each experiment was conducted in a randomized complete block design with three replications during the growing season of 2016. Results of genetic variance analyses revealed significant mean squares of general and specific combining ability for all traits, indicating the importance of additive and non-additive genetic effects for these traits. Additive gene actions played a more important role in controlling of plant height, leaf number, branch number and biological yield, whereas the role of non-additive gene actions was more conspicuous than those of additive gene actions in controlling of harvest index and fruit yield. Therefore, providing superior hybrids using breeding methods based on progeny test will be effective to improve these traits. Also, among selected parents, P4 parent in normal irrigation and moderate water stress and P6 parent in sever water stress were the best parents for crosses in the development of high-yield varieties in coriander.

Amir Gholizadeh, Hassan Amiri Oghan, Valiollah Rameeh, Kamal Payghamzadeh, Behnam Bakhshi, Bahram Alizadeh, Seyed Alireza Dalili, Shahriar Kia, Farnaz Shariati,
Volume 9, Issue 1 (9-2022)
Abstract

Genetic diversity is key to breeding programs and increasing selection efficiency. In this study, 19 promising advanced lines (F7 generation) along with two cultivars, Dalgan and, RGS003 were evaluated in a randomized complete block design with three replications in three experimental field stations (Gorgan, Sari and, Zabol) during the 2020–2021 growing season. The highest phenotypic and genotypic coefficient of variations was found for number of lateral branches and number of pods per plant, respectively. The highest broad sense heritability was estimated for days to end of flowering, and days to start of flowering and the lowest broad sense heritability was estimated for the plant height. The genotypes G16, G18, G15, G1, G2, G5, and G20 with a higher SIIG values as well as a higher seed yield above average were introduced as superior genotypes with respect to yield and other agronomic traits. Therefore, these genotypes can be used for further testing, including adaptation tests. Also, the results of factor analysis and genetic correlation coefficients indicated a positive relationship between number of lateral branches, number of pods per plant and number of seeds per pod with seed yield and seed yield. Generally, it can be concluded that number of lateral branches, number of pods per plant and number of seeds per pod traits could be used as the appropriate criteria to select for increasing seed yield in rapeseed breeding programs.

Hossein Mehripour Azbarmi, Jalal Saba, Bahram Alizadeh, Amir Gholizadeh, Farid Shekari,
Volume 11, Issue 1 (9-2024)
Abstract

The genotype × environment interaction is a major challenge in studying quantitative characters because it reduces grain yield stability in different environments. In this regard, to analysis the genotype × environment interactions and to determine the yield stability of winter rapeseed mutant lines, 9 lines and 6 cultivars were evaluated in a randomized complete block design with three replications in six experimental field stations (Esfahan, Hamedan, Karaj, Kermanshah, Qazvin and Zarghan) during 2021–2023 croping seasons. The combined analysis of variance indicated that the effects of environments, genotypes and genotype × environment interaction were significant, suggesting that the genotypes responded differently in the studied environment conditions. So, there was the possibility of stability analysis. According to the stability analysis results using the Eberhart and Russel method, the Talaye cultivar with higher grain yield than overall mean and regression coefficient equal to one (bi=1) was identified as the genotype with high general stability for all regions. Based on the simultaneous selection method for yield and stability (YSi), the lines Z-900-6, T-1200-1, and Talaye cultivar with the lowest values were stable, whereas Zarafam, Okapi and Express cultivars with the highest values were unstable. Also, based on the SIIG index, the lines Z-900-6, T-1200-1, and Talaye cultivar with having high SIIG values as well as higher grain yields that total average was recognized as superior genotypes from the point of stability and grain yield. According to the results of cluster analysis, Karaj, Zarghan, Kermanshah and Isfahan locations were located in a group that indicates these locations had high predictability and repeatability power.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 29 queries by YEKTAWEB 4657