[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 3 results for Darvishnia

Fatemeh Darvishnia, Mohammadhadi Pahlevani, Khalil Zaynali Nezhad, Khosro Azizi, Saied Bagherikia,
Volume 7, Issue 1 (9-2020)
Abstract

In order to determine the most effective indices for quantifying drought tolerance and identify genotypes that are tolerant to water stress in bread wheat, 50 bread wheat genotypes were compared in a randomized complete block design with three replications under both the non-stress dry farming with two complementary irrigation and the water stress dry farming conditions in Khorramabad, Iran. Analysis of variance showed that there was a significant difference among the genotypes in terms of all of the traits except the number of spike per area. In this study, eight indices including: Stress Tolerance Index (STI), Geometric Mean Productivity (GMP), Mean Productivity (MP), Yield Index (YI), Harmonic Mean (HM), Yield Stability Index (YSI), Stress Susceptibility Index (SSI), and Tolerance index (TOL) were calculated by using of seed yield of the genotypes under both conditions. Indices that selection based on them will improve the yield in both conditions, are considered as suitable index. STI, GMP, MP and HM were introduced as suitable index for drought resistance selection. Genotypes Shiroodi and S-90-5 were determined as the most appropriate based on 3D plot. Based on positive correlation between water stress resistance indices and yield under stress and non-stress environments, STI and GMP were the best indices. By using the Biplot method, Shiroodi, S-90-5 and Oroum genotypes were considered as high yielding potential genotypes under the both conditions. According to the results of cluster analysis, genotypes were classified into three groups based on drought tolerance indices. Graphical analysis of genotypes also showed that genotypes Shiroodi and S-90-5 were more profitable than others under both drought stress and non-drought stress conditions. These genotypes could also be used as parents caring desirable genes in the crossing programs and selection of tolerate genotypes.

Fatemeh Derikvand, Eidi Bazgir, Mostafa Darvishnia, Hossein Mirzaei Najafgholi,
Volume 10, Issue 1 (9-2023)
Abstract

Apple is one of the most important economic products of Iran and the world. Apple brown rot disease (Monilinia laxa) is one of the important diseases that causes yield loss in pre-harvest and post-harvest stages. In this research, the amount of changes in some defense compounds of apple fruit, including peroxidase and catalase enzymes, following inoculation with M. laxa was assessed. Extraction and measurement of peroxidase and catalase enzymes were done at 0, 3, 6, 9 and 12 days post inoculation with M. laxa. Also, in this study, the changes in the expression of PR1 and PR8 genes in response to brown rot disease in apple fruit was recorded at 12, 24, 48 and 96 hours along with controls. The results of the analysis of variance of resistance genes expression at different time points were significant. After 48 hours, the expression of PR1 and PR8 genes was observed to be the highest compared to the control. The expression of PR1 and PR8 genes was observed to be 3 and 8 times that of the control, respectively. In this research, the expression of PR1 and R8 genes was assessed for the first time following M. laxa inoculation in apples. Results of the present study showed that reseistance genes as well as the antioxidant enzymes can help to improve resistance against apple brown rot disease as an important storage pathogens for long-term storage.

Mohammad Nader Ebrahimi, Hadi Ahmadi, Mostafa Darvishnia, Daryoush Ghoudarzi,
Volume 10, Issue 2 (2-2024)
Abstract

Hexaploid winter wheat (Triticum aestivum L., 2n= 6x= 42, AABBDD) is an important small-grain cereal crop grown for food and feed. In Iran, wheat is the most cultivated cereal crop where winter wheat is ranked 1st in terms of production. Wheat fusarium head blight (FHB) is one of the most important diseases of wheat in humid and hot regions of the world, which causes a decrease in yield and grain quality. Fusarium head blight is caused by Fusarium graminearum. In order to investigate the resistance of some wheat traits against HBF, 27 varieties and lines of bread wheat were sown at the farm of Faculty of Agriculture, Lorestan University. The spikes were infected at the first flowering stage by spray inoculation. The results showed that there was a great diversity among the 27 varieties of bread wheat tested in terms of growth traits, yield components, and grain yield. The results of The Duncan's test for comparing means showed that cultivars Ghods, Shiraz, Morvarid 2, and Pishtaz had a significant superiority in terms of grain yield compared to other cultivars. The results of simple correlation and also stepwise regression analysis showed that the traits of 1000 seed weight, plant height, number of seeds per spike, number of spikes, spike length and plant height are very important traits for grain yield. According to values of broad sense heritability and genetic gain for plant height and high correlation of this trait and seed yield, plant height can be used as a suitable trait for improving seed yield by selection. The overall results showed that Shiraz, Pishtaz, Quds and Morwarid-2 cultivars are suitable for transferring resistance to wheat spike blight disease in breeding programs.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 29 queries by YEKTAWEB 4657