[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::
Showing 3 results for Bagherikia

Saeed Bagherikia, Mohammadhadi Pahlevani, Ahad Yamchi, Khalil Zenalinezhad, Ali Mostafaie,
Volume 4, Issue 1 (9-2017)
Abstract

Under drought stress conditions, as one of the most important limiting factors of grain yield in wheat at arid and semi-arid regions, the remobilization of assimilates gain would be more valuable to grain filling. There are a few reports on the importance of remobilization of the root during the grain filling period under drought stress conditions. An advanced mutant line of bread wheat (T-65-7-1) along with its wild type (cv. Tabasi), were planted at two moisture conditions (normal and 30-40% of field capacity) as a factorial experiment based on a completely randomized design with three replications. Sampling for gene expression analysis was conducted from the root in two stages (7 and 21 days after anthesis). In these genotypes, fructan remobilization, efficiency of fructan remobilization, and relative expression of genes involved in the synthesis and hydrolysis of fructan during the grain filling period, in root, were studied under terminal drought stress. The results showed that the stored fructan in the root participated in the assimilate remobilization. Higher fructan remobilization through root to grain in mutant line under drought stress conditions was due to over-expression of genes involved in the synthesis of fructan (1-SST and 6-SFT) at 7-days after anthesis and in hydrolysis of fructan (6-FEH) at 21-days after anthesis, compared to wild type. Drought stress did not cause a significant change in gene expression of 1-FFT and 1-FEH genes in the root of both genotypes, which confirms the only β (2,6) linkages as predominant form of fructan has affected under drought stress conditions. In wheat breeding programs, 1-SST, 6-SFT and 6-FEH can be used as molecular markers for selecting genotypes with high fructan content and more remobilization.
Fatemeh Darvishnia, Mohammadhadi Pahlevani, Khalil Zaynali Nezhad, Khosro Azizi, Saied Bagherikia,
Volume 7, Issue 1 (9-2020)
Abstract

In order to determine the most effective indices for quantifying drought tolerance and identify genotypes that are tolerant to water stress in bread wheat, 50 bread wheat genotypes were compared in a randomized complete block design with three replications under both the non-stress dry farming with two complementary irrigation and the water stress dry farming conditions in Khorramabad, Iran. Analysis of variance showed that there was a significant difference among the genotypes in terms of all of the traits except the number of spike per area. In this study, eight indices including: Stress Tolerance Index (STI), Geometric Mean Productivity (GMP), Mean Productivity (MP), Yield Index (YI), Harmonic Mean (HM), Yield Stability Index (YSI), Stress Susceptibility Index (SSI), and Tolerance index (TOL) were calculated by using of seed yield of the genotypes under both conditions. Indices that selection based on them will improve the yield in both conditions, are considered as suitable index. STI, GMP, MP and HM were introduced as suitable index for drought resistance selection. Genotypes Shiroodi and S-90-5 were determined as the most appropriate based on 3D plot. Based on positive correlation between water stress resistance indices and yield under stress and non-stress environments, STI and GMP were the best indices. By using the Biplot method, Shiroodi, S-90-5 and Oroum genotypes were considered as high yielding potential genotypes under the both conditions. According to the results of cluster analysis, genotypes were classified into three groups based on drought tolerance indices. Graphical analysis of genotypes also showed that genotypes Shiroodi and S-90-5 were more profitable than others under both drought stress and non-drought stress conditions. These genotypes could also be used as parents caring desirable genes in the crossing programs and selection of tolerate genotypes.

Esmaeil Dasturani, Khalil Zaynali Nezhad, Masood Soltani Najafabadi, Mohammadhadi Pahlevani, Hassan Soltanlo, Saeed Bagherikia,
Volume 8, Issue 1 (8-2021)
Abstract

The aim of this study was to determine the haplotype groups and identify the specific alleles associated with desirable agronomic characteristics in bread wheat. For this purpose, 42 local bread wheat genotypes belong to Iran region and nine commercial cultivars along with Chinese Spring variety (reference genotype) were cultivated in the format of augmented design and evaluated based on their 13 phenotypic traits. The results of descriptive statistics showed that awn length and day to flowering had the highest and lowest phenotypic coefficient of variation, respectively. Eight microsatellite markers were used to investigate the haplotype variation of QTLs associated with phenotypic traits located on wheat chromosomes 4B and 7D. The result showed that the genotypes were classified into 13 and 6 haplotype groups according to the allelic comparison with the reference genotype on chromosome 4B and 7D, respectively. In order to investigate the relationship between traits and markers, analysis of variance was performed based on completely randomized design with unequal numbers of replications for each marker. In general, of the 13 traits studied, there was a statistically significant linkage for eight traits and for the three traits, an allele-specific was introduced simultaneously. If the breeders are interested in genotype selection that simultaneously have three desirable characteristics such as early anthesis, semi-dwarfing and a greater number of grains per spike, they can use an allele-specific (153 bp) of Xgwm149-4B marker.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 29 queries by YEKTAWEB 4657