|
|
|
Search published articles |
|
|
Showing 3 results for Abbasi
Peyman Sharifi, Abouzar Abbasian, Ali Mohaddesi, Volume 7, Issue 2 (3-2021)
Abstract
Additive main effect and multiplicative interaction (AMMI) and best linear unbiased prediction (BLUP) are two methods for analyzing multi-environment trials (MET). In this study, seven selected rice lines were evaluated along with two check varieties based on randomized complete block design in Tonekabon, Amol and Sari (Iran) in three growing seasons of 2011-14. To quantify the genotypic stability, the best linear unbiased predictions of the genotype by environment interactions (GEI) were estimated, and singular value decomposition (SVD), which is the basis of AMMI analysis, was performed on the resulting matrix. The likelihood ratio test (LRT) showed that the effect of GEI was significant on grain yield, number of tillers, thousand grains weight and panicle length. Therefore, due to the significant interaction of genotype by environment, BLUP analysis can be performed on this data. The biplot of first principal component (PC1) of the environment versus nominal yield showed that genotypes 7 ([IR 67015-22-6-2-(A37632) × (Amol3 × Ramzanalitarom)]39), 6 (IR67015-22-6-2-(A37632) × (Amol3 × Ramzanalitarom)]126) and 2 ([IR64669-153-2-3 - (A8948) × (4Surinam Deylamani)]2), due to the lowest scores of the PC1, had a small share in the GEI and had more grain yield stability. The biplot of grain yield versus WAASB, placed genotypes in four regions, so that genotypes in the fourth region, including genotypes 6, 7, 8 (Line 843, check variety), and 9 (Shirodi, check variety), were due to large value of response variable (high grain yield) and high stability (low values of WAASB) were very productive and had extensive stability. Identification of genotypes with weighted average of WAASB and response variable (WAASBY) criteria showed that genotypes 6 and 7 were high yields and stable. Based on the multi-trait stability index (MTSI), G6 was also selected as the best genotype in terms of grain yield, evaluated traits and stability of each trait. Totally, genotype 6 was stable and superior based on the results of all methods.
Maryam Ghorbani, Kianoosh Cheghamirza, Saeed Abbasi, Zahra Aziziaram, Volume 10, Issue 1 (9-2023)
Abstract
The current research was carried out to evaluate genetic diversity of 18 common bean cultivars and promising lines and to determine SSR and SCoT informative markers associated with 14 seed characteristics including the number of seeds per pod, 100 seed weight, seed length, seed width, the contents of crude protein, total soluble sugar, starch content, crude fat, iron, calcium, magnesium, zinc, uronic acid, and mineral ash. The polymorphism information content (PIC) values varied from 0.2 to 0.5 with an average of 0.39 for the SSR markers and from 0.19 to 0.42 with an average of 0.34 for the SCoT markers. The total average resolving power of SSR and SCoT markers were 1.54 and 5.34, respectively, indicating higher efficiency of SCoT markers than SSR markers for the diversity analysis. The common bean studied genotypes were clustered into three distinct groups for both markers based on the Complete Linkage method. Principal coordinate analysis (PCoA) for the SSR markers revealed that the first two principal components justified 59.05% of whole variation. For the SCoT marker, on the other hand, the fraction of variances explained by the first two principal components was equal to 25.43 indicating a better distribution of SCoT markers than SSR markers in the common bean genome. Analysis of molecular variance based on the grouping obtained from cluster analysis showed that the diversity within the group based on SSR and SCoT markers was equal to 89 and 78%, respectively. The results of regression analysis for the studied markers and the bean seed characteristics showed the existence of a significant relationships between a single marker with the several studied traits. This could indicate the association or linkage of the marker locations. Twelve out of 14 of the investigated common bean seed characteristics showed a significant relationship with at least one molecular marker.
Mostafa Khodadadi, Behzad Sorkhilalehloo, Seyed Mohammad Mahdi Mortazavian, Jahangir Abbasi Kohpalekani, Mahmoud Bagheri, Milad Karbasi, Volume 10, Issue 1 (9-2023)
Abstract
Eggplant is a highly nutritious vegetable that is widely consumed. The aim of this study was to evaluate the genetic diversity between eggplant accessions from the National Plant Gene-Bank of Iran. In the first year, a preliminary evaluation was conducted using 168 accessions. Based on preliminary evaluation results, 40 accessions were selected for complementary evaluation in the second year. The evaluation was based on 23 quantitative and qualitative traits. The results of the preliminary evaluation showed statistically significant (P<0.01) differences between accessions for all traits. Fruit shape frequencies were rounded (35.89 percent), elongated (32.18 percent), oval (13.67 percent), Semi-elongated (13.15 percent), and mace-shaped (5.11 percent). In the complementary evaluation, there were significant differences between accessions for all traits. Qualitative traits such as flower color (1.56) and fruit shape (1.53) exhibited the highest genetic variation, while fruit color (0.5) showed the lowest. Cluster analysis analysis results revealed four groups for accessions and the highest (22.34) and least (0.12) genetic distances between 1 and 2 and between 7 and 21accessions, respectively. Factor analysis showed that the first three factors explained 68.06 percent of total variation in data. The first and second factors were related to yield and yield components, respectively. Also, fruit yield traits showed high heritability and there was significant genetic correlation between these traits. Therefore, high heritable and high-scoring traits in these factors should be considered when selecting progenies in segregating populations for improvement in terms of fruit yield and shape.
|
|