[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Search published articles ::

Mehdi Rahimi, Maryam Abdolinasab,
Volume 6, Issue 2 (3-2020)
Abstract

Biochemical and physiological traits are affected by environmental stresses and therefore the breeding of these traits will play an effective role in stress tolerance. In this study, hybrids of five S7 lines of maize in a 5 × 5 half-diallel design were investigated in order to study the combining ability of biochemical and physiological traits of maize at the Research Farm of Graduate University of Advanced Technology, Kerman, Iran during the 2017-18 crop year based on randomized complete block design with three replications. The results of analysis of variance by fourth Griffing's method showed that the general (GCA) and specific (SCA) combining ability variances were significant for protein, proline, sugar content, carotenoid, chlorophyll a, chlorophyll b and total chlorophyll traits. Therefore, the role of additive and non-additive effects was identified in controlling these traits. Protein, proline, chlorophyll a and total chlorophyll traits were more controlled by additive effects, whereas the carotenoid trait was more controlled by non-additive effects and the role of additive and non-additive effects in controlling other traits was almost equal. The KSC704-S7-11 line showed positive and significant general combining ability for most of the studied traits, suggesting this line can be used in breeding programs to improve and increase stress tolerance. In addition, P1 × P3 and P4 × P5 crosses showed the most positive and significant specific combining ability for proline, chlorophyll a, total chlorophyll and carotenoid traits; thus they can be considered as the best hybrids to improve and increase stress tolerance in corn.

Hossein Astaraki, Peyman Sharifi, Fatemeh Sheikh,
Volume 6, Issue 2 (3-2020)
Abstract

In order to estimation genotypic correlation and heritability of some faba bean traits, 26 faba bean genotypes were evaluated in a randomized complete block design with three replications during 2014-16 growing seasons in Agricultural Research Sation of Borujerd located in Lorestan province, Iran. The restricted maximum likelihood (REML) was used to estimate the genotypic and phenotypic correlations, broad sence heritability and genetic gain. Analysis of variance based on least squares and REML indicated significant effect of genotype on days to maturity, plant height, hundred seed weight, pod length and dry seed yield. Genotype×year interactions were significant on all of the traits except of pod length. Borujerd cultivar (G26) and G20 had the highest dry seed yield in both of years. REML results indicated a significant positive genetic correlation between dry seed yield and biological yield and plant height. Also, there were a significant negative phenotypic correlation between dry seed yield and days to maturity, and significant positive phenotypic correlation between dry seed yield and plant height, biological yield and harvest index. So, the selection of early maturing genotypes with a higher yield is achievable and selection can be done to improve the performance of dry seed yield. Cluster analysis indicated variability among genotypes. According to values of broad sence heritability and genetic gain for plant height and high genetic correlation of this trait and dry seed yield; plant height can be used as a suitable trait for improving dry seed yield by selection.

Leila Khazaie, Reza Shirzadian Khoramabad, Ali-Akbar Ebadi, Ali Moumeni,
Volume 7, Issue 1 (9-2020)
Abstract

Mutagenesis has been one of the important sources of genetic diversity and Plant mutants can be important bio-resources for crop breeding and functional genomics studies. Breeding conventional methods for generating of genetic variability are of low efficiency. We showed that treatment of seeds of rice(Hashemi cultivar) with 0.8% EMS for 8 h caused visible phenotypic variations on M2 rice mutant genotypes including flowering date, plant height, number of fertile tiller, panicle length, number of filled and unfilled grains per panicle, grain width and length, 100 grain weight and grain yield. The phenotypic variation coefficients of most traits found to be more than the genetic variation coefficients. The number of filled grains per panicle and seed length had the highest and lowest general heritability, respectivly. The seed yield had also high heritability. Analysis of correlation between different characteristics in the mutant genotypes showed that the number of fertile tillers and the number of unfilled grains per panicle had positive correlation with yield. Also, grain yield exhibited positive and significant correlation with panicle length, number of tillers and number of filled grains at genotypic level. In multiple regression analysis by stepwise method, number of tillers, number of filled grains per panicle, 100-grain weight, and grain width entered into the model, respectively, that explained 96 percent of grain yield variations. Results of grain yield and its components path coefficient analysis showed that the number of tiller had the highest direct effect (0.77) through than other traits on grain yield and, therefore it can be considered as major trait in grain yield improvement in rice. Also, based on results of this research and by using optimal selection index, mutant genotypes EM 18-17-5 and EM 15-14-1 were selected as superior mutant genotypes. This mutant population is expected to be serves as a genetical resource for understanding rice biology as well as for use in genetic improvement of quantitative traits.

Mahnaz Katouzi, Saeid Navabpour, Hossein Sabouri , Ali Akbar Ebadi,
Volume 7, Issue 2 (3-2021)
Abstract

In order to identify QTLs controlling agronomically traits, landrace Tarom and rice Tarom mutant were crossed. SSR, ISSR, iPBS and IRAP markers were amplified in 250 F2 individuals to prepare the linkage map. Number of tillers, 100 grain weight, number of filled grains, number of unfilled grains, plant height, panicle length, number of branches, stem diameter, grain length, grain width, grain shape, straw weight, days to maturity, flag leaf length and flag leaf width were measured for 250 individuals. The linkage map covered 970.9 cM of rice genome. The distance between two adjacent markers was calculated to be 12.77 cM. Based on the results, a total of 13 QTLs were identified for the evaluated traits. For all studied traits, alleles transferred from the parents to the QTLs detected increased grain yield. Most QTLs were detected for days to flowering. Three QTLs were located on chromosomes 10 and 4 (two QTLs) for days to flowering. qLDF-4a and qLDF-4b had a negative additive effect and the parent alleles of the mutant landrace Tarom reduced the number of days to flowering. These QTLs explained 11.6% of the phenotypic variance. Since the population under study was derived from a cross between landrace and mutant Tarom cultivars and the resulting population varied only in the mutated genes; so, the QTLs detected in this study were more accurate in location and expression levels, and after validation of them, they could be recommended for marker assistant selection breeding programs.

Jamal Rahimi Darabad, Varahram Rashidi, Hossein Shahbazi, Mohammad Moghaddam Vahed, Ebrahim Khalilvand,
Volume 7, Issue 2 (3-2021)
Abstract

In order to determine the heritability and genetic parameters of some agronomic traits in barely (Hordeum vulgare L.) cultivars, a seven-parent half diallel (F1 crosses + parents) was conducted in the non-stress and salt stress (8 and 12 ds m-1) conditions in a randomized complete block design with three replications. Genetic analysis was performed by Hayman’s method and Griffing’s fixed model, method 2. The slope of linear regression of Wr on Vr were significantly higher than 0 and had not significant difference with 1 indicating the additive-dominant model was satisfied in all cases. The narrow-sense heritability of traits was medium to high (0.4-0.8) but their broad-sense heritability was estimated relatively high (0.7-0.9). Results of regression graphs showed that Afzal parent had the most dominant allele. The significance of “a” component in most of the studied traits indicated the presence of the additive effects in controlling of traits. The significance of “b” component in most of the studied traits indicated the presence of the dominance effects in controlling of traits. The proportion of positive and negative genes was lower than 0.25 in all of the traits (except for grain weight per spike in 12 ds m-1 salinity), indicating the presence of asymmetry in the distribution of the positive and negative alleles in the parents. Based on general combining ability effects, it was concluded that under salinity, cultivar “Kavir” had favorable alleles in plant height, grain weight per spike and 100 grain weight traits and can be used as a general parent in breeding programs. Estimates of high broad-sense heritability and narrow-sense heritability in most traits indicated that these genetic materials were promising for breeding under normal and salinity stress conditions.

Rahmatollah Karimizadeh, Tahmasb Hosseinpour, Jabbar Alt Jafarby, Kamal Shahbazi Homonlo, Mohammad Armion,
Volume 7, Issue 2 (3-2021)
Abstract

There are different methods for study the genotype × environment interactions and determining stable genotypes such as parametric, non-parametric and multivariate methods. In this research, 19 selective genotypes from advanced trials of durum wheat at 2011-2012 agronomic year, have been cultivated with Dehdasht check cultivar for three growing years (2012-2015) in five locations (including Gachsaran, Gonbad, Khorramabad, Moghan and Ilam) in a randomized complete block design with four replications in each location. Combined analysis of variance indicated significant effects of genotype, environment and interactions of genotype × environment. In parametric uni-variate methods, genotypes 7, 12, 18 and 20 were determined as stable genotypes. In non-parametric uni-variate methods, genotypes 2, 7, 12, 13, 18, 19 and 20 had the lowest genotype × environment interaction and they were determined as stable genotypes. In AMMI method, genotypes 2, 7, 12, 19 and 20 had the lowest rank in different environments and highest grain yield, and these genotypes seems more stable genotypes. It can be concluded that genotypes 7, 12, 18 and 20 could be considered as promising genotypes and candidate for introducing new durum cultivar.

Bahram Alizadeh, Abbas Rezaizad, Mohammad Yazdandoost Hamedani, Gholamhossein Shiresmaeili, Farshad Nasserghadimi, Hamid Reza Khademhamzeh,
Volume 7, Issue 2 (3-2021)
Abstract

The genotype × environment interaction is a major challenge in the study of quantitative characters because it reduces yield stability in different environments and also it complicates the interpretation of genetic experiments and makes predictions difficult. In this regard to analysis of genotype × environment interaction and determine the yield stability of winter rapeseed genotypes in cold and mild cold regions of the country, 9 lines and 4 cultivars were evaluated in a randomized complete block design with three replications in six experimental field stations (Isfahan, Hamedan, Karaj, Kermanshah, Khoy and Zarghan) during 2015–2017 growing seasons. Results of combined analysis of variance indicated that the effects of environments, genotypes and genotype × environment interaction were significant, suggesting that the genotypes responded differently in the studied environment conditions. So, there was the possibility of stability analysis. The Nafis cultivar and BAL-92-1 line with seed yields 4086 and 3829 kg.h-1, respectively, were better than overall mean and had lower ranks and rank variance than others. According to the results of stability analysis using Eberhart and Russel method, the BAL-92-1 line with higher seed yield than overall mean and regression coefficient equal one (bi=1) was identified as the genotype with high general stability for all regions. Based on the simultaneous selection method for yield and stability (YSi), the lines of HW-92-1, BAL-92-1, HW-92-1 and Nafis cultivar with the lowest values were stable, whereas lines BAL-92-4, HW-92-2, HW-92-3 and Ahmadi cultivar with highest values were unstable. Also, based on the SIIG index, the lines of HW-92-1, BAL-92-1, BAL-92-6, BAL-92-11 and Nafis cultivar with having high SIIG value as well as higher seed yield that total average were recognized as superior genotypes from the point of stability and seed yield. Finally, BAL-92-1 line with high yield and broad adaptability was selected as superior line for supplementary studies to introduce the new commercial cultivar in cold and mild cold regions of Iran.

Ali Dowlatshah, Ahmad Ismaili, Hadi Ahmadi, Karim Khademi, Daryoush Goudarzi,
Volume 7, Issue 2 (3-2021)
Abstract

Plant breeding researches is based on genetic diversity and evaluation of genetic diversity is also one of the most important steps in introduction of new cultivars. In this study, genetic diversity of 25 grass pea genotypes was studied based on randomized complete block design with three replicates in Khorramabad (Iran). Analysis of variance showed significant differences among genotypes for most of traits. Mean comparison showed that genotype IF1312 with the highest grain yield and genotypes IF1332 and IF471 with the highest dry and fresh forage yield had the best yield. Principal component analysis showed that the first 3 factors explained 62.64% of total variance. Based on cluster analysis, genotypes IF1307, IF1872 and IF471 with the highest grain and forage yield are belonged to one cluster. REML method was used to estimate genetic correlation and heritability of different traits. The highest amount of heritability (0.87) was estimated for number of immature grains and the least heritability (0.10) was estimated for total dry weight. Grain yield had a high and positive genetic correlation with forage yield, and biomass, percentage of leaf and dry forage yield also had a high and positive genetic correlation with fresh forage yield. Totally, genotype IF1307 had the best performance for most of traits compared to the other genotypes and had an acceptable forage yield among genotypes.

Maryam Rasoulzadeh Aghdam, Reza Darvishzadeh, Ebrahim Sepehr, Hadi Alipour,
Volume 8, Issue 1 (8-2021)
Abstract

Nutrient deficiencies are important abiotic stresses that can affect plant growth and development. In this study, 76 sunflower pour lines collected from different regions of the world were evaluated in pot using some physiological traits with combined analysis of completely randomized design with three replications under optimal and phosphorus deficit conditions. Phosphorus deficiency decreased the means of all studied traits except canopy temperature. Oilseed sunflower lines were grouped into five and four clusters in each one of optimum and phosphorus deficient conditions, respectively. However, in both optimum and phosphorus deficient conditions, lines 19, 21, 27, 44 and 71 were classified into desirable cluster with high yield and yield components. Multivariate tolerance index (MFVD) for each genotype was calculated using the ratio and productivity matrices of the studied traits under optimal and phosphorus deficit conditions using principal component analysis on the resulting matrices. Based on the resulting biplot, lines 71, 74, 65, 21, 39, 7, 18 and 11 were introduced as desirable and phosphorus deficit tolerant lines.

Rahmatollah Karimizadeh, Tahmasp Hosseinpour, Peyman Sharifi, Jabar Alt Jafarby, Kamal Shahbazi, Kavoos Keshavarzi,
Volume 8, Issue 1 (8-2021)
Abstract

Durum wheat (Triticum turgidum L.), like most other crops, is affected by various stresses. Therefore, cultivars that, in addition to the ability to produce higher yields, can maintain their yield potential in different years and locations are considered superior cultivars. In order to obtain high-yielding and stable genotypes of durum wheat, 16 lines with two control cultivars Dehdasht and Seymareh were evaluated in four locations of Gachsaran, Gonbad, Khorramabad and Moghan based on randomized complete block design with four replications in three cropping seasons (2013-2016). Combined analysis of variance indicated a significant effect of genotype, environment and genotype by environment interaction. Genotypes G6 and G18 had the highest and lowest grain yield, respectively. Based on parametric methods, genotypes G3, G5, G15, G13 and G16 and based on non-parametric methods, genotypes G1, G3, G4, G5, G15 and G3 were the most stable genotypes. The most stable genotypes based on the total Kang sum-rank were genotypes G15, G5, G6 and G1. The Selection index of ideal genotype (SIIG) was used to integrate all indices into one index, based on which genotypes G5 and G15 were the superior genotypes with the highest SIIG index and grain yield. Based on all indices, genotypes G5 and G15 were the most stable genotype in terms of grain yield and can be used in cultivar introduction processes.

Samaneh Akbari, Omidali Akbarpour, Payam Pezeshkpour,
Volume 8, Issue 1 (8-2021)
Abstract

The challenge of the interaction of genotype × environment is one of the main issues in plant breeding. Various statistical methods to estimate the interaction of genotype × environment and choice the stable and productive genotype(s) have been introduced. In this study, 14 lentil genotypes along with two controls (Sepehr and Gachsaran cultivars) were evaluated during four growing seasons (2016-2020). The experiments were conducted in a randomized complete blocks design in three replications at Sarab Changai Agricultural Research Station, Khorammabad (Iran). The combined analysis of variance was used to investigate the interaction of genotype × environment, and results of the analysis showed significant effects for genotype, year, and genotype × environment interaction. Genotypes G5 (FLIP2014-032L) and G12 (ILL8006) were introduced based on Si(1), Si(2), and NPi(1) statistics as stable and high-yielding genotypes. Based on various non-parametric statistics, genotypes G5 (FLIP2014-032L) with a mean grain yield of 1574.68 kg.ha-1 and G12 (ILL8006) with a mean grain yield of 1333.6 kg.ha-1 were introduced as stable genotypes. The heritability rate was estimated on the plot mean basis for yield trait in four years (0.61 ± 0.18) which indicated the capability of the studied genotypes to be selected and improved for grain yield. Based on the results of cluster analysis, the genotypes were divided into three main clusters. The highest distance was observed between the second and third groups. The first cluster included highly stable genotypes.

Kaveh Sadeghi, Mohammadhadi Pahlevani, Mohsen Esmeilzadeh Moghaddam, Khalil Zaynali Nezhad,
Volume 8, Issue 2 (3-2022)
Abstract

Identifying selection indices is the most important step of a breeding project that aims to improve grain yield. The definition of the selection index is usually done by evaluating the variables in multivariate statistical methods. In the present study, the relationship between grain yield and its components in bread wheat genotypes was determined by multivariate statistical methods. The experiment was conducted in a randomized complete block design with 3 replications in the research farm of Gorgan University of Agricultural Sciences and Natural Resources in the 2018-19 crop years. Ten commercial cultivars of bread wheat along with their offspring from direct and inverse crosses in a dialysis arrangement were evaluated for morphological and phenological traits, especially grain yield and its components. The results of genotypic and phenotypic correlation coefficients showed a positive and significant correlation (at 1% probability level) between grain yield and spike length, spike weight, number of fertile tillers, number of seeds per spike, number of spikes per spike, 1000-seed weight, biological yield and harvest index. Based on the results of stepwise regression analysis, biological yield, harvest index, number of grains per main spike and main spike weight were entered into the regression model, respectively, and explained a total of 98% of the variation in grain yield. Based on the results of path analysis, biological yield had the highest direct effect on grain yield. After biological yield, the most direct effect on grain yield was related to the weight of main spike. Also, by considering eigenvalues greater than one in factor analysis, 8 hidden factors were identified that explained a total of 75.18% of the data changes. In general, it can be concluded that biological yield, harvest index, number of seeds per spike and weight of spike compared to other traits can be used as appropriate indicators in breeding programs to select high-yield genotypes in field conditions. Genotypes Alo, Ehsan♂ × Gonbad♀ and Ehsan had the highest value for the studied traits, which can be used in future breeding researches.


Page 1 from 1     

پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4657