[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 8, Issue 2 (2022) ::
pgr 2022, 8(2): 33-44 Back to browse issues page
Isolation of Monoterpene Synthase Gene (NsTPS2) and Evaluation of Terpenoid Compounds in Black Cumin Medicinal Plant (Nigella sativa L.)
Rizan Elyasi , Mohammad Majdi * , Abdolbaset Azizi
Department of Production Engineering and Plant Genetics, University of Kurdistan, Sanandaj, Iran , m.majdi@uok.ac.ir
Abstract:   (4850 Views)
Black cumin (Nigella sativa) is a medicinal plant of the Ranunculacea family which raised attention due to its pharmaceutical properties. Medical significance of N. sativa mainly attributed to its oxygenated monoterpenes which are biosynthesized via the methyl erythritol phosphate (MEP) pathway located in plastids. In this study, the essential oil components of leaves, flowers, and developmental stages of seed including half black seeds, soft black seeds, and hard black seeds were analyzed in N. sativa. Whereas no terpene was detected in flowers and leaves, seeds were found to be the major site of biosynthesis and accumulation of terpenes, and the amount of terpene compounds changed during seed maturation. The essential oil consists of monoterpenes (more than 99%) and sesquiterpenes (less than 1%). In order to improve our understanding of monoterpene metabolism, the partial sequence of a hypothetical monoterpene synthase (NsTPS2) was isolated from N. sativa plant using RACE-PCR technique. This monoterpene synthase was identified from RNA sequencing data from soft black seeds. Except of the highly conserved DDXXD motif in NsTPS2 which is necessary to validate monoterpene synthases, no other conserved regions of other identified monoterpene synthases were observed. Dendrogram analysis revealed that NsTPS2 had the highest homology with a terpene synthase (72.89%) from Aconitum carmichaelii and these two sequences were grouped in the same group. Nigella sativa and Aconitum carmichaelii both belong to the Ranunculacea family. This indicates that the genetic information of plants of the Ranunculacea family can be used to isolate different monoterpene synthase. The results of this research can be useful in genetic manipulation and metabolic engineering of Nigella sativa.
Keywords: Nigella sativa, RNA sequencing, Secondary metabolites, Terpene synthase
Full-Text [PDF 1191 kb]   (979 Downloads)    
Type of Study: Research | Subject: Molecular genetics
Accepted: 2022/02/15
References
1. Ahmad, N., Ahmad, R., Al-Layly, A., Al-Shawi, H., Al-Ali, A. and Amir, M. (2018). Ultra-highperformance liquid chromatography-based identification and quantification of thymoquinone in Nigella sativa extract from different geographical regions. Pharmacognosy Magazine, 14(57): 471-480. [DOI:10.4103/pm.pm_119_18]
2. Akhondian, J., Kianifar, H., Raoofziaee, M., Moayedpour, A., Toosi, M.B. and Khajedaluee, M. (2011). The effect of thymoquinone on intractable pediatric seizures (pilot study). Epilepsy Research, 93(1): 39-43. [DOI:10.1016/j.eplepsyres.2010.10.010]
3. Botnick, I., Xue, W., Bar, E., Ibdah, M., Schwartz, A., Joel, D.M., Lev, E., Fait, A. and Lewinsohn, E. (2012). Distribution of primary and specialized metabolites in Nigella sativa seeds, a spice with vast traditional and historical uses. Molecules, 17(9): 10159-10177. [DOI:10.3390/molecules170910159]
4. Chen, F., Tholl, D., Bohlmann, J. and Pichersky, E. (2011). The family of terpene synthases in plants: a mid-size family of genes specialized metabolism that is highly diversified throughout the kingdom. Plant Journal, 66: 212-229. [DOI:10.1111/j.1365-313X.2011.04520.x]
5. Crocoll, C., Asbach, J., Novak, J., Gershenzon, J. and Degenhardt, J. (2010). Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Molecular Biology, 73: 587-603. [DOI:10.1007/s11103-010-9636-1]
6. Degenhardt, J., Köllner, T.G. and Gershenzon, J. (2009). Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 70(15): 1621-1637. [DOI:10.1016/j.phytochem.2009.07.030]
7. Elyasi, R., Majdi, M., Bahramnejada, B. and Mirzaghaderi, G. (2016). Spatial modulation and abiotic elicitors responses of the biosynthesis related genes of mono/triterpenes in black cumin (Nigella sativa). Industrial Crops and Products, 79: 240-247. [DOI:10.1016/j.indcrop.2015.11.005]
8. Ferdous, A.J., Islam, S.N., Ahsan, M., Hasan, C.M. and Ahmed, Z.U. (1992). In vitro antibacterial activity of the volatile oil of Nigella sativa seeds against multiple drug-resistant isolates of Shigella spp. and isolates of Vibrio cholerae and Escherichia coli. Phytotherapy Research, 6(3): 137-140. [DOI:10.1002/ptr.2650060307]
9. Forouzanfar, F., Bazzaz, B. and Hosseinzadeh, H. (2014). Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iranian Journal of Basic Medical Sciences, 17(12): 929-938.
10. Galata, M., Sarker, L.S. and Mahmoud, S.S. (2014). Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of Coriandrum sativum L. Phytochemistry, 102: 64-73. [DOI:10.1016/j.phytochem.2014.02.016]
11. Gerige, S.J., Gerige, M.K.Y. and Rao, M. (2009). GC-MS analysis of Nigella sativa seeds and antimicrobial activity of its volatile oil. Brizilian Archives of Biology and Technology, 52(5): 1189-1192. [DOI:10.1590/S1516-89132009000500016]
12. Goyal, S.N., Prajapati, C.P. and Gore, P.R. (2017). Therapeutic potential and pharmaceutical development of thymoquinone: a multitargeted molecule of natural origin. Frontiers in Pharmacology, 8: 656. [DOI:10.3389/fphar.2017.00656]
13. Hamrouni-Sellami, I., Kchouk, M.E. and Marzouk, B. (2008). Lipid and aroma composition of black cumin (Nigella sativa L.) seeds from Tunisia. Journal of Food Biochemistry, 32(3): 335-352. [DOI:10.1111/j.1745-4514.2008.00161.x]
14. Iqbal, M.S., Nadeem, S.H., Mehbood, S.H., Chafoor, A., Rajoka, M.I., Qureshi, A.S. and Niaz, B. (2011). Exploration of genotype specific fingerprinting of Nigella sativa L. using RAPD markers. Turkish Journal Agriculture and Forestry, 35: 569-578.
15. Irmisch, S., Krause, S.T., Kunert, G., Gershenzon, J., Degenhardt, J. and Köllner, T.G. (2012). The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC Plant Biology, 12: 84. [DOI:10.1186/1471-2229-12-84]
16. Isik, S., Kartal, M. and Erdem, S.A. (2017). Quantitative analysis of thymoquinone in Nigella sativa L. (Black cumin) seeds and commercial seed oils and seed oil capsule from Turkey. Ankara University Eczacılık Fakulties Dergisi, 41(1): 34-41. [DOI:10.1501/Eczfak_0000000593]
17. Kabir, Y., Akasaka-Hashimoto, Y., Kubota, K. and Komai, M. (2020). Volatile compounds of black cumin (Nigella sativa L.) seeds cultivated in Bangladesh and India. Heliyon, 6: e053432. [DOI:10.1016/j.heliyon.2020.e05343]
18. Li, Y., Kong, D., Fu, Y., Sussman, M.R. and Wu, H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry, 148: 80-89. [DOI:10.1016/j.plaphy.2020.01.006]
19. Liu, X., Park, J.H., Assayed, M.C., Shimoda, M. and Shim, J.H. (2013). Isolation of volatiles from Nigella sativa seeds using microwave assisted extraction: effect of whole extracts on canine and murine CYP1A. Biomedical Chromatography, 27(7): 938-945. [DOI:10.1002/bmc.2887]
20. Majdi, M., Liu, Q., Karimzadeh, G., Malboobi, M.A., Beekwilder, J., Cankar, K., Vos, R.D., Todorovic, S., Simonovic, A. and Bouwmeester, H. (2011). Biosynthesis and localization of parthenolide in glandular trichomes of feverfew (Tanacetum parthenium L. Schulz Bip.). Phytochemistry, 72(14): 1739-1750. [DOI:10.1016/j.phytochem.2011.04.021]
21. Majdi, M., Karimzade, G. and Malboobi, M.A. (2014). The study of relative gene expression of key genes of terpene biosynthesis in tissues and different developmental stages of feverfew (Tanacetum parthenium) genotypes using real-time PCR. Plant Genetic Researches, 1(2): 25-32 (In Persian). [DOI:10.29252/pgr.1.2.25]
22. Mun˜oz-Bertomeu, J., Ros, R., Arrillaga, I. and Segura, J. (2008). Expression of spearmint limonene synthase in transgenic spike lavender results in an altered monoterpene composition in developing leaves. Metabolic Engineering, 10(3): 166-177. [DOI:10.1016/j.ymben.2008.04.002]
23. Nickavar, B. and Esbati, N. (2012). Evaluation of the antioxidant capacity and phenolic content of three Thymus species. Journal of Acupuncture & Meridian Studies, 5(3): 119-125. [DOI:10.1016/j.jams.2012.03.003]
24. Özmen, A., Basbulbul, G. and Aydin, T. (2007). Antimitotic and antibacterial effects of the Nigella sativa L. seed. Caryologia, 60(3): 270-272. [DOI:10.1080/00087114.2007.10797947]
25. Piras, A., Rosa, A., Marongiu, B., Porcedda, S., Falconieri, D. and Dessì, M.A. (2013). Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide. Industrial Crops and Products, 46: 317-323. [DOI:10.1016/j.indcrop.2013.02.013]
26. Rahimmalek, M., Tabatabaei, B.E.S., Etemadi, N., Goli, S.A.H., Arzani, A. and Zeinali, H. (2009). Essential oil variation among and within six Achillea species transferred from different ecological regions in Iran to the field conditions. Industrial Crops and Products, 29(2): 348-355. [DOI:10.1016/j.indcrop.2008.07.001]
27. Rchid, H., Nmila, R., Bessiere, J.M., Sauvaire, Y. and Chokaïri, M. (2004). Volatile components of Nigella damascene L. and Nigella sativa L. seeds. Journal of Essential Oil Research, 16(6): 585-587. [DOI:10.1080/10412905.2004.9698804]
28. Salem, M.L. (2005). Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Intternatoina Immunopharmacollogy, 5(13): 1749-1770. [DOI:10.1016/j.intimp.2005.06.008]
29. Sallaud, C., Rontein, D., Onillon, S., Jabès, F., Duffé, P., Giacalone, C., Thoraval, S., Escoffier, C., Herbette, G. and Leonhardt, N. (2009). A novel pathway for sesquiterpene biosynthesis from Z, Z -farnesyl pyrophosphate in the wild tomato Solanum habrochaites. The Plant Cell, 21: 301-317. [DOI:10.1105/tpc.107.057885]
30. Sapir-Mir, M., Mett, A., Belausov, E., Tal-Meshulam, S., Frydman, A., Gidoni, D. and Eyal, Y. (2008). Peroxisomal localization of arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiology, 148(3): 1219 -1228. [DOI:10.1104/pp.108.127951]
31. Scholz, M., Lipinski, M., Leupold, M., Luftmann, H., Harving, L., Ofir, R., Fischer, R., Prufer, D. and Muller, K. (2009). Methyl jasmonate induced accumulation of kalapanaxsaponin I in Nigella Sativa. Phytochemistry, 70: 517-522. [DOI:10.1016/j.phytochem.2009.01.018]
32. Solati, Z., Baharin, B.S. and Bagheri, H. (2014). Antioxidant property, thymoquinone content and chemical characteristics of different extracts from Nigella sativa L. seeds. Journal of the American Oil Chemists' Society, 91(2): 295-300. [DOI:10.1007/s11746-013-2362-5]
33. Soltani Howyzeh, M., Sadat Noori, S.A., Shariati, V. and Amiripour, M. (2018). Large scale identification of SSR molecular markers in Ajowan (Trachyspermum ammi) using RNA sequencing. Plant Genetic Researches, 6(1): 31-46 (In Persian). [DOI:10.29252/pgr.6.1.31]
34. Tiruppur Venkatachallam, S.K., Pattekhan, H., Divakar, S. and Kadimi, U. (2010). Chemical composition of Nigella sativa L. seed extracts obtained by supercritical carbon dioxide. Food Science and Technology International, 47(6): 598-605. [DOI:10.1007/s13197-010-0109-y]
35. Wajs, A., Bonikowski, R. and Kalemba, D. (2008). Composition of essential oil from seeds of Nigella sativa L. cultivated in Poland. Flavour and Fragrance Journal, 23(2): 126-132. [DOI:10.1002/ffj.1866]
36. Williams, D.C., McGarvey, D.J., Katahira, E.J. and Croteau, R. (1998). Truncation of limonene synthase preprotein provides a fully active 'pseudomature' form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemical Journal, 37(35): 12213-12220. [DOI:10.1021/bi980854k]
37. Zhang, M., Liu1. J., Li, K. and Yu, D. (2013). Identification and characterization of a novel monoterpene synthase from Soybean restricted to neryl diphosphate precursor. Plose One, 8(10): e75972. [DOI:10.1371/journal.pone.0075972]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Elyasi R, Majdi M, Azizi A. Isolation of Monoterpene Synthase Gene (NsTPS2) and Evaluation of Terpenoid Compounds in Black Cumin Medicinal Plant (Nigella sativa L.). pgr 2022; 8 (2) :33-44
URL: http://pgr.lu.ac.ir/article-1-241-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (2022) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 39 queries by YEKTAWEB 4642