1. Akramian, M., Tabatabaei, S.M.F. and Mirmasoumi, M. (2008). Virulence of different strains of Agrobacterium rhizogenes on genetic transformation of four Hyoscyamus species. American-Eurasian Journal of Agricultural & Environmental Sciences, 3: 759-763. 2. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. [ DOI:10.1016/0003-2697(76)90527-3] 3. Carvalho, E.B. and Curtis, W.R. (1998). Characterization of fluid‐flow resistance in root cultures with a convective flow tubular bioreactor. Biotechnology and Bioengineering, 60: 375-384.
https://doi.org/10.1002/(SICI)1097-0290(19981105)60:3<375::AID-BIT15>3.0.CO;2-L [ DOI:10.1002/(SICI)1097-0290(19981105)60:33.0.CO;2-L] 4. Chilton, M.D., Tepfer, D.A., Petit, A., David, C., Casse-Delbart, F. and Tempé, J. (1982). Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature, 295: 432-434. [ DOI:10.1038/295432a0] 5. Choi, S.M., Son, S.H., Yun, S.R., Kwon, O.W., Seon, J.H. and Paek, K.Y. (2000). Pilot-scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell,Tissue and Oorgan Culture, 62: 187-193. [ DOI:10.1023/A:1006412203197] 6. Christey, M.C. and Braun, R.H. (2005). Production of hairy root cultures and transgenic plants by Agrobacterium rhizogenes-mediated transformation. Transgenic Plants: Methods and Protocols. Humana Press Publisher, Totowa, New Jersey, USA. 7. Dashchi, S., Rahnama, H., Cheghamirza, K. and Zamani, K. (2021). Construction of plant expression vectors harboring WRI1 and LPAAT genes and Its transformation in tobacco plants. Plant Genetic Researches, 7(2): 41-54 (In Persian). [ DOI:10.52547/pgr.7.2.4] 8. Gaosheng, H. and Jingming, J. (2012). Production of useful secondary metabolites through regulation of biosynthetic pathway in cell and tissue suspension culture of medicinal plants. Recent Advances in Plant In vitro Culture, 10: 53038. [ DOI:10.5772/53038] 9. Giri, A. and Narasu, M.L. (2000). Transgenic hairy roots recent trends and applications. Biotechnology Advances, 18: 1-22. [ DOI:10.1016/S0734-9750(99)00016-6] 10. Hussain, M.J., Abbas, Y., Nazli, N., Fatima, S., Drouet, S., Hano, C. and Abbasi, B.H. (2022). Root Cultures, a Boon for the Production of Valuable Compounds: A Comparative Review. Plants, 11: 439. [ DOI:10.3390/plants11030439] 11. Kevers, C., Jacques, P., Thonart, P. and Gaspar, T. (1999). In vitro root cultures of Panax ginseng and P. quinquefolium. Plant Growth Regulation, 27: 173-179. [ DOI:10.1023/A:1006266413919] 12. Khademi, M., Nazarian-Firouzabadi, F. and Ismaili, A. (2021). The effect of phosphorus and nitrogen on hairy roots production in Nicotiana tobaccum as a model plant. Journal of Plant Productions, 44: 13-24. 13. Khademi, M., Varasteh-Shams, M., Nazarian-Firouzabadi, F. and Ismaili, A. (2020). New Recombinant Antimicrobial Peptides Confer Resistance to Fungal Pathogens in Tobacco Plants. Frontiers in Plant Science, 11: 1236. [ DOI:10.3389/fpls.2020.01236] 14. Khademi, M. and Nazarian-Firouzabadi, F. (2019). Expression and antimicrobial activity analysis of dermaseptin B1 recombinant peptides in tobacco transgenic plants. Plant Genetic Researches, 6(1): 139-150 (In Persian). [ DOI:10.29252/pgr.6.1.139] 15. Mor, A., Hani, K. and Nicolas, P. (1994). The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. Journal of Biological Chemistry, 269: 31635-31641. [ DOI:10.1016/S0021-9258(18)31742-3] 16. Mor, A. and Nicolas, P. (1994). The NH2-terminal alpha-helical domain 1-18 of dermaseptin is responsible for antimicrobial activity. Journal of Biological Chemistry, 269: 1934-1939. [ DOI:10.1016/S0021-9258(17)42116-8] 17. Osusky, M., Osuska, L., Kay, W. and Misra, S. (2005). Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. Theoretical and Applied Genetics, 111: 711-722. [ DOI:10.1007/s00122-005-2056-y] 18. Pop, T.I., Pamfil, D. and Bellini, C. (2011). Auxin control in the formation of adventitious roots. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39: 307-316. [ DOI:10.15835/nbha3916101] 19. Rahmat, E. and Kang, Y. (2019). Adventitious root culture for secondary metabolite production in medicinal plants: a review. Journal of Plant Biotechnology, 46: 143-157. [ DOI:10.5010/JPB.2019.46.3.143] 20. Rodrigues, V., Kumar, A., Prabhu, K.N., Pragadheesh, V., Shukla, A.K. and Sundaresan, V. (2021). Adventitious root cultures of Decalepis salicifolia for the production of 2-hydroxy-4-methoxybenzaldehyde, a vanillin isomer flavor metabolite. Applied Microbiology and Biotechnology, 105: 3087-3099. [ DOI:10.1007/s00253-021-11262-6] 21. Shanmugaraj, B., I Bulaon, C.J. and Phoolcharoen, W. (2020). Plant molecular farming: A viable platform for recombinant biopharmaceutical production. Plants, 9: 842. [ DOI:10.3390/plants9070842] 22. Sivanesan, I. and Jeong, B.R. (2009). Induction and establishment of adventitious and hairy root cultures of Plumbago zeylanica L. African Journal of Biotechnology, 8(20): 5294-5300. 23. Stone, S.L. and Gifford, D.J. (1997). Structural and biochemical changes in loblolly pine (Pinus taeda L.) seeds during germination and early-seedling growth. I. Storage protein reserves. International Journal of Plant Sciences, 158: 727-737. [ DOI:10.1086/297484] 24. Sudha, G. and Ravishankar, G. (2002). Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell, Tissue and Organ Culture, 71: 181-212. [ DOI:10.1023/A:1020336626361] 25. Yang, X., Zhang, J., Lei, Z., Yan, X., Hu, X., Cheng, D. and Zhang, Z. (2019). Adventitious root cultures from leaf explants of Helicteres angustifolia L. as a novel source for production of natural bioactive compounds. Acta Physiologiae Plantarum, 41: 1-10. [ DOI:10.1007/s11738-019-2964-0] 26. Yevtushenko, D.P. and Misra, S. (2007). Comparison of pathogen‐induced expression and efficacy of two amphibian antimicrobial peptides, MsrA2 and temporin A, for engineering wide‐spectrum disease resistance in tobacco. Plant Biotechnology Journal, 5: 720-734. [ DOI:10.1111/j.1467-7652.2007.00277.x] 27. Ziemienowicz, A., Tzfira, T. and Hohn, B. (2008) Mechanisms of T-DNA integration in Agrobacterium: from Biology to Biotechnology. Springer, Berlin, DE. [ DOI:10.1007/978-0-387-72290-0_11]
|