[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 8, Issue 2 (2022) ::
pgr 2022, 8(2): 83-102 Back to browse issues page
Identification, Isolation and Expression Analysis of Hevein gene Family in Barley (Hordeum vulgar)
Reza Mir Derikvand *, Seyede Sajad Sohrabi, Seyyed Mohsen Sohrabi, Kamran Samiei
Abstract:   (2075 Views)
Today, antimicrobial peptides are known as a new generation of antibiotics for treatment of microbial diseases in human and animals and protecting plants against different pathogens. Heveins are a group of antimicrobial peptides which are considered as one of the most important groups of antimicrobial peptides due to the very high diversity and expression in different plant organs as well as the effective role in responding to biotic and abiotic stresses. The main purpose of the current study was identifying and isolation of hevein genes in barley and study of characteristics and their expression in different tissues and environmental conditions. To this purpose, all hevein protein sequences were retrieved from NCBI database. The hevein consensus sequence was obtained from alignment of retrieved sequences. After obtaining the consensus sequence, this sequence was aligned against the barley genome using tBLASTn tool. The resulting sequences were analyzed to determine the full-ORF, and to prediction of functional domains, signal peptides, subcellular localization, physicochemical properties, amino acid frequency and antimicrobial activity. The complete coding sequence of hevein genes were amplified by PCR. In this study, thirteen hevein genes, with an average ORF length of 813 bp, were identified, isolated and sequenced in barley. Hevein genes isolated from barley showed a high similarity with plant heveins in terms of gene and protein sequences, as well as structural and functional characteristics. The results showed that barley Heveins such as other plant Heveins have no introns or have only one intron, and the presence of secretory peptide signals, extracellular aggregation, the presence of ChtBD1 functional domains in all of them and Lyz-like functional domains in some of them was confirmed. The results also showed that antimicrobial activity and maximal expression in roots and reproductive organs as well as expression in response to biological and non-biological stresses are other features of these proteins. The findings of the current study increase our understanding of the effect of Hevein genes on plant biological processes such as growth and development, as well as the response to biotic and abiotic stresses.
Keywords: Gene expression, Biotics and abiotics stresses, ChtBD1 functional domains, Hevein
Full-Text [PDF 1675 kb]   (449 Downloads)    
Type of Study: Research | Subject: Molecular genetics
Received: 2021/11/3 | Accepted: 2022/02/16
1. Agrawal, S., Acharya, D., Adholeya, A., Barrow, C.J. and Deshmukh, S.K. (2017). Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Frontiers in Pharmacology, 8: 828. [DOI:10.3389/fphar.2017.00828]
2. Andreev, Y.A., Korostyleva, T.V., Slavokhotova, A.A., Rogozhin, E.A., Utkina, L.L., Vassilevski, A.A., Grishin, E.V., Egorov, T.A. and Odintsova, T.I. (2012). Genes encoding Hevein-like defense peptides in wheat: distribution, evolution, and role in stress response. Biochimie, 94: 1009-1016. [DOI:10.1016/j.biochi.2011.12.023]
3. Bailey, T.L., Johnson, J., Grant, C.E. and Noble, W.S. (2015). The MEME suite. Nucleic Acids Research, 43: 39-49. [DOI:10.1093/nar/gkv416]
4. Beintema, J.J. (1994). Structural features of plant chitinases and chitin-binding proteins. FEBS Letters, 350: 159-163. [DOI:10.1016/0014-5793(94)00753-5]
5. Berthelot, K., Lecomte, S., Coulary-Salin, B., Bentaleb, A. and Peruch, F. (2016a). Hevea brasiliensis proHevein possesses a conserved C-terminal domain with amyloid-like properties in vitro. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864: 388-399. [DOI:10.1016/j.bbapap.2016.01.006]
6. Berthelot, K., Peruch, F. and Lecomte, S. (2016b). Highlights on Hevea brasiliensis (pro) Hevein proteins. Biochimie, 127: 258-270. [DOI:10.1016/j.biochi.2016.06.006]
7. Bowdish, D.M., Davidson, D.J., Lau, Y.E., Lee, K., Scott, M.G. and Hancock, R.E. (2005). Impact of LL-37 on anti-infective immunity. Journal of Leukocyte Biology, 77: 451-459. [DOI:10.1189/jlb.0704380]
8. Bulet, P., Stöcklin, R. and Menin, L. (2004). Anti‐microbial peptides: from invertebrates to vertebrates. Immunological Reviews, 198: 169-184. [DOI:10.1111/j.0105-2896.2004.0124.x]
9. Chang, W.C., Lee, T.Y., Huang, H. D., Huang, H.Y. and Pan, R.L. (2008). PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics, 9: 1-14. [DOI:10.1186/1471-2164-9-561]
10. Chinnusamy, V., Schumaker, K. and Zhu, J.K. (2004). Molecular genetic perspectives on cross‐talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany, 55: 225-236. [DOI:10.1093/jxb/erh005]
11. Choon Koo, J., Jin Chun, H., Cheol Park, H., Chul Kim, M., Duck Koo, Y., Cheol Koo, S., Mi Ok, H., Jeong Park, S., Lee, S.H. and Yun, D.J. (2002). Over-expression of a seed specific Hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Molecular Biology, 50: 441-452. [DOI:10.1023/A:1019864222515]
12. Damme, E.J.V., Peumans, W.J., Barre, A. and Rougé, P. (1998). Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Critical Reviews in Plant Sciences, 17: 575-692. [DOI:10.1080/07352689891304276]
13. Doyle, J. (1991). DNA Protocols for Plants in Molecular Techniques in Taxonomy. Springer, New York, USA. [DOI:10.1007/978-3-642-83962-7_18]
14. Drikvand, R.M., Sohrabi, S.M. and Samiei, K. (2019). Molecular cloning and characterization of six defensin genes from lentil plant (Lens culinaris L.). 3 Biotech, 9(3): 104. [DOI:10.1007/s13205-019-1617-8]
15. Ebrahimi, M.A., Mohammadian, R. and Khalili, M. (2016). Estimation of genetic correlation, heritability and grouping of barley doubled haploid lines based on indicators related to germination under salt stress. Plant Genetic Researches, 3(1): 29-44 (In Persian). [DOI:10.29252/pgr.3.1.29]
16. Eleftherianos, I., Zhang, W., Heryanto, C., Mohamed, A., Contreras, G., Tettamanti, G., Wink, M. and Bassal, T. (2021). Diversity of insect antimicrobial peptides and proteins-A functional perspective: A review. International Journal of Biological Macromolecules, 191: 277-287. [DOI:10.1016/j.ijbiomac.2021.09.082]
17. Elsbach, P. (2003). What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses? Journal of Clinical Investigation, 111(11): 1643-1645. [DOI:10.1172/JCI18761]
18. Epand, R.M. (2016). Host Defense Peptides and Their Potential as Therapeutic Agents, Springer, New York, USA. [DOI:10.1007/978-3-319-32949-9]
19. Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, M., Qureshi, M. and Sangrador-Vegas, A. (2016). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 44: 279-285. [DOI:10.1093/nar/gkv1344]
20. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.e., Wilkins, M.R., Appel, R.D. and Bairoch, A. (2005) Protein identification and analysis tools on the ExPASy server. Springer, New York, USA. [DOI:10.1385/1-59259-890-0:571]
21. Gentles, A.J. and Karlin, S. (1999). Why are human G-protein-coupled receptors predominantly intronless? Trends in Genetics, 15: 47-49. [DOI:10.1016/S0168-9525(98)01648-5]
22. Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U. and Putnam, N. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research, 40: 1178-1186. [DOI:10.1093/nar/gkr944]
23. Goyal, R.K. and Mattoo, A.K. (2016) Plant Antimicrobial Peptides in Host Defense Peptides and Their Potential as Therapeutic Agents. Springer, New York, USA. [DOI:10.1007/978-3-319-32949-9_5]
24. Graham, J.H. and Strauss, S.L. (2021) Biological control of soilborne plant pathogens and nematodes in Principles and Applications of Soil Microbiology. Elsevier, Amsterdam, NL. [DOI:10.1016/B978-0-12-820202-9.00023-X]
25. Guruprasad, K., Reddy, B.B. and Pandit, M.W. (1990). Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection, 4: 155-161. [DOI:10.1093/protein/4.2.155]
26. Hetrick, K.J. and van der Donk, W.A. (2017). Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Current Opinion in Chemical Biology, 38: 36-44. [DOI:10.1016/j.cbpa.2017.02.005]
27. Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. and Nakai, K. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Research, 35: 585-587. [DOI:10.1093/nar/gkm259]
28. Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. The Journal of Biochemistry, 88: 1895-1898.
29. Iseli, B., Boller, T. and Neuhaus, J.M. (1993). The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiology, 103: 221-226. [DOI:10.1104/pp.103.1.221]
30. Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A. and Nuka, G. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30: 1236-1240. [DOI:10.1093/bioinformatics/btu031]
31. Käll, L., Krogh, A. and Sonnhammer, E.L. (2007). Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Research, 35: 429-432. [DOI:10.1093/nar/gkm256]
32. Kanrar, S., Venkateswari, J.C., Kirti, P.B. and Chopra, V.L. (2002). Transgenic expression of Hevein, the rubber tree lectin, in Indian mustard confers protection against Alternaria brassicae. Plant Science, 162: 441-448. [DOI:10.1016/S0168-9452(01)00588-X]
33. Kaur, A., Pati, P.K., Pati, A.M. and Nagpal, A.K. (2017). In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PLoS One, 12: e0184523. [DOI:10.1371/journal.pone.0184523]
34. Khademi, M. and Nazarian-Firouzabadi, F. (2019). Expression and antimicrobial activity analysis of dermaseptin B1 recombinant peptides in tobacco transgenic plants. Plant Genetic Researches, 6(1): 139-150 (In Persian). [DOI:10.29252/pgr.6.1.139]
35. Khaliluev, M., Mamonov, A., Smirnov, A., Kharchenko, P. and Dolgov, S. (2011). Expression of genes encoding chitin-binding proteins (PR-4) and Hevein-like antimicrobial peptides in transgenic tomato plants enhanced resistanse to Phytophthora infestance. Russian Agricultural Sciences, 37: 297-302. [DOI:10.3103/S1068367411040082]
36. Khodaei, S., Mohammadi, S.A. and Sadeghzadeh, B. (2015). QTL mapping of phosphorus concentration and content on shoot of barley. Plant Genetic Researches, 1(2): 15-24 (In Persian). [DOI:10.29252/pgr.1.2.15]
37. Knyazev, A.V., Ishmayana, S., Soedjanaatmadja, U.M.S., Lelet, M.I., Shipilova, A.S., Knyazeva, S.S., Amosov, A.A. and Shushunov, A.N. (2019). Comprehensive thermodynamic and structural study of Hevein. Journal of Chemical Thermodynamics, 131: 168-174. [DOI:10.1016/j.jct.2018.10.034]
38. Kouzai, Y. and Saito, A. (2013). Organ-and stage-specific expression of the lectin gene in tomato. Bulletin of the Shizuoka Institute of Science and Technology, 21: 27-33.
39. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35: 1547. [DOI:10.1093/molbev/msy096]
40. Kyte, J. and Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157: 105-132. [DOI:10.1016/0022-2836(82)90515-0]
41. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A. and Lopez, R. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 2(3): 2947-2948. [DOI:10.1093/bioinformatics/btm404]
42. Laukkanen, M.L., Mäkinen-Kiljunen, S., Isoherranen, K., Haahtela, T., Söderlund, H. and Takkinen, K. (2003). Hevein-specific recombinant IgE antibodies from human single-chain antibody phage display libraries. Journal of Immunological Methods, 278: 271-281. [DOI:10.1016/S0022-1759(03)00070-X]
43. Laverty, G., Gorman, S.P. and Gilmore, B.F. (2011). The potential of antimicrobial peptides as biocides. International Journal of Molecular Sciences, 12: 6566-6596. [DOI:10.3390/ijms12106566]
44. Le, C.F., Fang, C.M. and Sekaran, S.D. (2017). Intracellular targeting mechanisms by antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 61: e02340. [DOI:10.1128/AAC.02340-16]
45. Lee, H. and Raikhel, N. (1995). ProHevein is poorly processed but shows enhanced resistance to a chitin-binding fungus in transgenic tomato plants. Brazilian Journal of Medical and Biological Research= Revista Brasileira de Pesquisas Medicas e Biologicas, 28: 743-750.
46. Lee, H., Broekaert, W., Raikhel, N. and Lee, H. (1991). Co-and post-translational processing of the Hevein preproprotein of latex of the rubber tree (Hevea brasiliensis). Journal of Biological Chemistry, 266: 15944-15948. [DOI:10.1016/S0021-9258(18)98499-1]
47. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P. and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30: 325-327. [DOI:10.1093/nar/30.1.325]
48. Li, J., Hu, S., Jian, W., Xie, C. and Yang, X. (2021). Plant antimicrobial peptides: structures, functions, and applications. Botanical Studies, 62(1): 5. [DOI:10.1186/s40529-021-00312-x]
49. Lipkin, A., Anisimova, V., Nikonorova, A., Babakov, A., Krause, E., Bienert, M., Grishin, E. and Egorov, T. (2005). An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry, 66: 2426-2431. [DOI:10.1016/j.phytochem.2005.07.015]
50. Liu, S., Li, M., Su, L., Ge, K., Li, L., Li, X., Liu, X. and Li, L. (2016). Negative feedback regulation of ABA biosynthesis in peanut (Arachis hypogaea): a transcription factor complex inhibits AhNCED1 expression during water stress. Scientific Reports, 6: 1-11. [DOI:10.1038/srep37943]
51. Loo, S., Tay, S.V., Kam, A., Tang, F., Fan, J.S., Yang, D. and Tam, J.P. (2021). Anti-fungal Hevein-like peptides biosynthesized from quinoa cleavable hololectins. Molecules, 26(19): 5909. [DOI:10.3390/molecules26195909]
52. Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M. and Hurwitz, D.I. (2014). CDD: NCBI's conserved domain database. Nucleic Acids Research, 43: 222-226. [DOI:10.1093/nar/gku1221]
53. Martins, J.C., Maes, D., Loris, R., Pepermans, H.A., Wyns, L., Willem, R. and Verheyden, P. (1996). 1H NMR Study of the Solution Structure of Ac-AMP2, a Sugar Binding Antimicrobial Protein Isolated fromAmaranthus caudatus. Journal of Molecular Biology, 258: 322-333. [DOI:10.1006/jmbi.1996.0253]
54. McGinnis, S. and Madden, T.L. (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32: 20-W25. [DOI:10.1093/nar/gkh435]
55. Menkens, A.E., Schindler, U. and Cashmore, A.R. (1995). The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends in Biochemical Sciences, 20: 506-510. [DOI:10.1016/S0968-0004(00)89118-5]
56. Milne, L., Bayer, M., Rapazote-Flores, P., Mayer, C.D., Waugh, R. and Simpson, C.G. (2021). EoRNA, a barley gene and transcript abundance database. Scientific Data, 8: 1-10. [DOI:10.1038/s41597-021-00872-4]
57. Moghadam, A., Niazi, A., Afsharifar, A. and Taghavi, S.M. (2016). Expression of a recombinant anti-HIV and anti-tumor protein, MAP30, in nicotiana tobacum hairy roots: A pH-stable and thermophilic antimicrobial protein. PLoS One, 11: e0159653. [DOI:10.1371/journal.pone.0159653]
58. Nielsen, H. (2017). Predicting Secretory Proteins with SignalP. Protein Function Prediction: Methods and Protocols, 1611: 59-73. [DOI:10.1007/978-1-4939-7015-5_6]
59. Nongonierma, A.B. and FitzGerald, R.J. (2016). Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends in Food Science & Technology, 50: 26-43. [DOI:10.1016/j.tifs.2016.01.022]
60. Odintsova, T., Shcherbakova, L., Slezina, M., Pasechnik, T., Kartabaeva, B., Istomina, E. and Dzhavakhiya, V. (2020). Hevein-like antimicrobial peptides wamps: Structure-function relationship in antifungal activity and sensitization of plant pathogenic fungi to tebuconazole by WAMP-2-derived peptides. International Journal of Molecular Sciences, 21: 1-26. [DOI:10.3390/ijms21217912]
61. Pandey, S., Subramanaym Reddy, C., Yaqoob, U., Negi, Y. and Arora, S. (2015). Insilico analysis of cis acting regulatory elements CAREs in upstream regions of ascorbate glutathione pathway genes from oryza sativa. Biochem Physiol, 4: 2. [DOI:10.4172/2168-9652.1000159]
62. Peumans, W.J. and Van Damme, E. (1995). Lectins as plant defense proteins. Plant Physiology, 109: 347. [DOI:10.1104/pp.109.2.347]
63. Porto, W.F., Souza, V.A., Nolasco, D.O. and Franco, O.L. (2012). In silico identification of novel Hevein-like peptide precursors. Peptides, 38: 127-136. [DOI:10.1016/j.peptides.2012.07.025]
64. Pruitt, K.D., Tatusova, T. and Maglott, D.R. (2005). NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 33: 501-504. [DOI:10.1093/nar/gki025]
65. Punginelli, D., Schillaci, D., Mauro, M., Deidun, A., Barone, G., Arizza, V. and Vazzana, M. (2022). The potential of antimicrobial peptides isolated from freshwater crayfish species in new drug development: A review. Developmental & Comparative Immunology, 126: 104258. [DOI:10.1016/j.dci.2021.104258]
66. Saeed, B., Baranwal, V.K. and Khurana, P. (2016). Identification and expression profiling of the lectin gene superfamily in mulberry. The Plant Genome, 9(2): 1-13. [DOI:10.3835/plantgenome2015.10.0107]
67. Salami, R., Mohammadi, S.A., Ghafarian, S. and Moghaddam, M. (2016). Expression analysis of HvTIP2 and HvTIP4 in sensitive and tolerant barley genotypes under salinity stress. Plant Genetic Researches, 2(2): 1-14 (In Persian). [DOI:10.29252/pgr.2.2.1]
68. Salamov, A.A. and Solovyev, V.V. (2000). Ab initio gene finding in Drosophila genomic DNA. Genome Research, 10: 516-522. [DOI:10.1101/gr.10.4.516]
69. Santos-Silva, C.A.d., Tricarico, P.M., Vilela, L.M.B., Roldan-Filho, R.S., Amador, V.C., d'Adamo, A.P., Rêgo, M.d.S., Benko-Iseppon, A.M. and Crovella, S. (2021). Plant antimicrobial peptides as potential tool for topic treatment of hidradenitis suppurativa. Frontiers in Microbiology, 12: 795217. [DOI:10.3389/fmicb.2021.795217]
70. Shcherbakova, L., Odintsova, T., Pasechnik, T., Arslanova, L., Smetanina, T., Kartashov, M., Slezina, M. and Dzhavakhiya, V. (2020). Fragments of a wheat Hevein-like antimicrobial peptide augment the inhibitory effect of a triazole fungicide on spore germination of Fusarium oxysporum and Alternaria solani. Antibiotics, 9: 1-17. [DOI:10.3390/antibiotics9120870]
71. Shen, G., Pang, Y., Wu, W., Miao, Z., Qian, H., Zhao, L., Sun, X. and Tang, K. (2005). Molecular cloning, characterization and expression of a novel jasmonate-dependent defensin gene from Ginkgo biloba. Journal of Plant Physiology, 162: 1160-1168. [DOI:10.1016/j.jplph.2005.01.019]
72. Shukurov, R., D Voblikova, V., Nikonorova, A.K., Komakhin, R.A., V Komakhina, V., A Egorov, T., V Grishin, E. and V Babakov, A. (2012). Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel Hevein-like peptides increases their resistance to fungal pathogens. Transgenic Research, 21: 313-325. [DOI:10.1007/s11248-011-9534-6]
73. Shukurov, R., Voblikova, V., Nikonorova, A., Egorov, T.A., Grishin, E. and Babakov, A. (2010). Increase of resistance of Arabidopsis thaliana plants to phytopathogenic fungi expressing Hevein-like peptides from weed plant Stellaria media. Russian Agricultural Sciences, 36: 265-267. [DOI:10.3103/S1068367410040117]
74. Shuorvazdi, A., Mohammadi, S.A., Norozi, M. and Sadeghzadeh, B. (2014). Molecular Analysis of genetic diversity and relationships of barley landraces based on microsatellite markers. Plant Genetic Researches, 1(1): 51-64 (In Persian). [DOI:10.29252/pgr.1.1.51]
75. Singh, N. and Abraham, J. (2014). Ribosomally synthesized peptides from natural sources. The Journal of Antibiotics, 67: 277-289. [DOI:10.1038/ja.2013.138]
76. Slavokhotova, A., Shelenkov, A., Andreev, Y.A. and Odintsova, T. (2017a). Hevein-like antimicrobial peptides of plants. Biochemistry (Moscow), 82(13): 1659-1674. [DOI:10.1134/S0006297917130065]
77. Thevissen, K., Kristensen, H.-H., Thomma, B.P., Cammue, B.P. and François, I.E. (2007). Therapeutic potential of antifungal plant and insect defensins. Drug Discovery Today, 12: 966-971. [DOI:10.1016/j.drudis.2007.07.016]
78. Van Holle, S. and Van Damme, E.J. (2015). Distribution and evolution of the lectin family in soybean (Glycine max). Molecules, 20: 2868-2891. [DOI:10.3390/molecules20022868]
79. Van Parijs, J., Broekaert, W.F., Goldstein, I.J. and Peumans, W.J. (1991). Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta, 183: 258-264. [DOI:10.1007/BF00197797]
80. Vanzolini, T., Bruschi, M., Rinaldi, A.C., Magnani, M. and Fraternale, A. Multitalented synthetic antimicrobial peptides and their antibacterial, antifungal and antiviral mechanisms. International Journal of Molecular Sciences, 23(1): 545. [DOI:10.3390/ijms23010545]
81. Vila-Farres, X., Chu, J., Inoyama, D., Ternei, M.A., Lemetre, C., Cohen, L.J., Cho, W., Reddy, B.V.B., Zebroski, H.A. and Freundlich, J.S. (2017). Antimicrobials inspired by nonribosomal peptide synthetase gene clusters. Journal of the American Chemical Society, 139: 1404-1407. [DOI:10.1021/jacs.6b11861]
82. Waghu, F.H., Gopi, L., Barai, R.S., Ramteke, P., Nizami, B. and Idicula-Thomas, S. (2014). CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic Acids Research, 42: 1154-1158. [DOI:10.1093/nar/gkt1157]
83. Wang, X., Shi, M., Wang, D., Chen, Y., Cai, F., Zhang, S., Wang, L., Tong, Z. and Tian, W.M. (2013). Comparative proteomics of primary and secondary lutoids reveals that chitinase and glucanase play a crucial combined role in rubber particle aggregation in Hevea brasiliensis. Journal of Proteome Research, 12: 5146-5159. [DOI:10.1021/pr400378c]
84. Wang, Y., Chang, R.Y.K., Britton, W.J. and Chan, H.K. (2022). Advances in the development of antimicrobial peptides and proteins for inhaled therapy. Advanced Drug Delivery Reviews, 180: 114066. [DOI:10.1016/j.addr.2021.114066]
85. Wang, Y., Liu, G.J., Yan, X.F., Wei, Z.G. and Xu, Z.R. (2011). MeJA-inducible expression of the heterologous JAZ2 promoter from Arabidopsis in Populus trichocarpa protoplasts. Journal of Plant Diseases and Protection, 118: 69-74. [DOI:10.1007/BF03356384]
86. Xiang, Y., Huang, R.H., Liu, X.Z., Zhang, Y. and Wang, D.C. (2004). Crystal structure of a novel antifungal protein distinct with five disulfide bridges from Eucommia ulmoides Oliver at an atomic resolution. Journal of Structural Biology, 148: 86-97. [DOI:10.1016/j.jsb.2004.04.002]
87. Yan, H., Dai, X., Feng, K., Ma, Q. and Yin, T. (2016). IGDD: a database of intronless genes in dicots. BMC Bioinformatics, 17: 1-6. [DOI:10.1186/s12859-016-1148-9]
88. Yeaman, M.R. and Yount, N.Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 55: 27-55. [DOI:10.1124/pr.55.1.2]
89. Yu, C.S., Cheng, C.W., Su, W.C., Chang, K.C., Huang, S.W., Hwang, J.K. and Lu, C.H. (2014). CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One, 9: e99368. [DOI:10.1371/journal.pone.0099368]
90. Zhang, L.J. and Gallo, R.L. (2016). Antimicrobial peptides. Current Biology, 26: R14-R19. [DOI:10.1016/j.cub.2015.11.017]
91. Zhang, Q.Y., Yan, Z.B., Meng, Y.M., Hong, X.Y., Shao, G., Ma, J.J., Cheng, X.R., Liu, J., Kang, J. and Fu, C.Y. (2021). Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Medical Research, 8: 48. [DOI:10.1186/s40779-021-00343-2]
92. Zou, M., Guo, B. and He, S. (2011). The roles and evolutionary patterns of intronless genes in deuterostomes. Comparative and Functional Genomics, 2011: 680673. [DOI:10.1155/2011/680673]
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mir Derikvand R, Sohrabi S S, Sohrabi S M, Samiei K. Identification, Isolation and Expression Analysis of Hevein gene Family in Barley (Hordeum vulgar). pgr. 2022; 8 (2) :83-102
URL: http://pgr.lu.ac.ir/article-1-231-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (2022) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.14 seconds with 30 queries by YEKTAWEB 4447