[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 7, Issue 1 (2020) ::
pgr 2020, 7(1): 77-102 Back to browse issues page
Investigation of Drought Stress Tolerance and Adaptation in Iranian Endemic Anise (Pimpinella anisum L.) Genotypes
Shaghayegh Mehravi , Gholam Ali Ranjbar * , Hamid Najafi-Zarrini , Ghader Mirzaghaderi
Department of Plant Breeding and Biotechnology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran , ali.ranjbar@sanru.ac.ir
Abstract:   (9038 Views)
Anise is an annual plant belonging to Apiaceae family and fruit essential oil of this herb is used in various pharmaceutical, cosmetic and beverage industries. Drought stress is one of the most critical limiting factors for anise production in worldwide. In this research, to finding interrelationships among different traits and performance, some anise genotypes were evaluated using the biplot method. In this study, 18 anise genotypes were evaluated in normal irrigation regime and drought stress conditions according to a randomized complete block design with three replications at the field of the Western Australia University (UWA), Australia. Fifteen phonological, morphological and physiological traits were measured. Results indicated the positive and significant correlations between yield and fruit number and fruit thousand weight in both conditions. Due to the negative correlation between phonological features with fruit yield in two different irrigation conditions, it could be concluded that to have genotypes with high fruit yield, selection for early ripening genotypes should be done in anise. In this study, a significant correlation was observed between fruit yield and relative water content in the stress condition. Therefore, this trait can be used as a physiological index to evaluate drought tolerance in anise. According to cluster analysis based on the measured traits, genotypes were divided into 3 groups in both non-stress and stress conditions. According to the results of the comparison of the means of the groups in non-stress and drought stress conditions, genotypes No. 1, 5, 6, 11, 12, 14, 15 and 16 were identified as the most drought-tolerant genotypes. These genotypes could be utilized in breeding programs for further improvement of drought tolerance in anise germplasm.
Keywords: Anise, Drought stress, Fruit yield, Essential oil, Biplot, Genotypic correlation
Full-Text [PDF 984 kb]   (1139 Downloads)    
Type of Study: Research | Subject: Plant improvement
Accepted: 2020/08/15
References
1. Abou El-Nasr, T.H.S. and Ottai, M.E.S. (2012). Enhancement of essential oil yield of Egyptian anise, Pimpinella anisum, L. by individual plant selection. Australian Journal of Basic and Applied Sciences, 6(7): 510-517.
2. Ahmadian, A. and Noorzad, S. (2014). Effect of water stress and harvesting stages on quantitative and qualitative yields of coriander (Coriandrum sativum L.). Journal of Agroecology, 6(1): 130-141 (In Persian).
3. Akbarpour, O.A., Dehghani, H. and Rousta, M.J. (2015). Evaluation of salt stress of Iranian wheat germplasm under field conditions. Crop and Pasture Science, 66(8): 770-781.
4. Allard, R.W. (1999). Principles of Plant Breeding. 2th Ed. John Wiley and Sons, New York, USA.
5. Al Mofleh, I., Alhaider, A., Mossa, J.S., Al-Soohaibani, M. and Rafatullah, S. (2007). Aqueous suspension of anise (Pimpinella anisum) protects rats against chemically induced gastric ulcers. World Journal of Gastroenterology, 13(7): 1112-1118.
6. Asgari, F., Sefidkon, F. and Mirzaee, M. (1998). Quantitative and qualitative composition of the essential oil of anise. Research and Development, 38: 110-114 (In Persian).
7. Ashraf, M.F. and Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2): 206-216.
8. Behera, T.K., Gaikward, A.B., Singh, A.K. and Staub, J.E. (2008). Relative efficiency of DNA markers (RAPD, ISSR and AFLP) in detecting genetic diversity of bitter gourd (Momordica charantia L.). Journal of the Science of Food and Agriculture, 88(4): 733-737.
9. Blum, A. (1996). Crop responses to drought and the interpretation of adaptation. Plant Growth Regulation, 20: 135-148.
10. Brandle, J. and McVetty, P. (1989). Heterosis and combining ability in hybrids derived from oilseed rape cultivars and inbred lines. Crop Science, 29(5): 1191-1194.
11. Curioni, A.O., Arizio, O.P., Garcia, M. and Alfonso, W. (2003). Preharvest phenometric characteristics of ansie Pimpinella anisum L. plants under various agroedaphoclimatic conditions. Revista Brasileira de Plantas Medicinalis, 5: 17-22.
12. Dabiri, M., Bahramnejad, M. and Baghbanzadeh, M. (2009). Ammonium salt catalyzed multicomponent transformation: simple route to functionalized spirochromenes and spiroacridines. Tetrahedron, 65(45): 9443-9447.
13. Dehghani, H., Dvorak, J. and Sabaghnia, N. (2012). Biplot analysis of salinity related traits in beard wheat (Triticum aestivum L.). Annals of Biological Research, 3(7): 3723-3731.
14. Dehghani, H., Omidi, H. and Sabaghnia, N. (2008). Graphic analysis of trait relations of rapeseed using the biplot method. Agronomy Journal, 100(5): 1443-1449.
15. Duhoon, S.S., Chandra, S., Basu, A.K. and Makhija, O.P. (1982). Components of genetic variation for yield & its attributes in a diallel cross of yellow-seeded Indian colza. Indian Journal of Agricultural Science, 52(3): 154-158.
16. Dwivedi, S.V., Singh, T. and Mishra, S.K. (2008). Association studies of yield with quantitative and qualitative characters of fennel (Foeniculum vulgare Mill.). Progressive Horticulture, 40(1): 114-116.
17. Dyulgerov, N. and Dyulgerova, B. (2013). Variation of yield components in coriander (Coriandrum Sativum L.). Agricultural Science & Technology, 5(2): 160-163.
18. Erice, G., Louahlia, S., Irigoyen, J.J., Sánchez-Díaz, M., Alami, I.T. and Avice, J.C. (2011). Water use efficiency, transpiration and net CO2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Environmental and Experimental Botany, 72(2): 123-130.
19. Eynizadeh, P., Dehghani, H. and Khodadadi, M. (2016). Investigation of drought stress tolerance and adaptation in Iranian endemic coriander (Coriandrum sativum L.) populations. Iranian Journal of Horticultural Science, 47(2): 317-327 (In Persian).
20. Eynizadeh, P., Dehghani, H. and Khodadadi, M. (2018a). Multipurpose selection of some Iranian endemic coriander (Coriandrum sativum L.) populations for simultaneous improvement of traits under different irrigation regimes. Environmental Stresses in Crop Sciences, 12(1): 223-237 (In Persian).
21. Eynizadeh, P., Dehghani, H. and Khodadadi, M. (2018b). Selecting drought tolerant endemic coriander ecotypes based on fruit yield and related traits using univariate and multivariate indices. Journal of Crop Production and Processing, 8(3): 99-114 (In Persian).
22. Fakerbaher, Z., Rezaei, M.B., Mehdi, M. and Abaszadeh, B. (2002). Study of quantitative and qualitative changes of essential oil (Satureja hortensis L.) during drought on the field. Iranian Journal of Medicinal and Aromatic Plants, 11: 37-51 (In Persian).
23. Falconer, D.S., Mackay, T.F.C. and Frankham, R. (1996). Introduction to Quantitative Genetics. 4th Ed. Longman, Harlow, UK.
24. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29: 185-212.
25. GGEbiplot (2011). A Statistical Package. Ottawa, ON, CA.
26. Gholizadeh, A. and Dehghani, H. (2016). Graphic analysis of trait relations of Iranian bread wheat germplasm under non-saline and saline conditions using the biplot method. Genetika, 48(2): 473-486.
27. Gholizadeh, A., Dehghani, H., Amini, A. and Akbarpour, O. (2018a). Study on trait relations of wheat genotypes using the biplot method. Iranian Journal of Field Crop Science, 49(3): 121-136 (In Persian).
28. Gholizadeh, A., Dehghani, H. and Khodadadi, M. (2018b). Estimation of genetic parameters, general and specific combining ability in Iranian endemic coriander populations. Plant Genetic Researches, 5(1): 19-38 (In Persian).
29. Gholizadeh, A., Dehghani, H. and Khodadadi, M. (2019). Interactions among traits in some coriander genotypes using the biplot method. Iranian Journal of Field Crop Science, 50(2): 181-193 (In Persian).
30. Golparvar, A.R., Ghanadha, M.R., Zali, A.A. and Ahmadi, A. (2002). Evaluation of morphological traits as selection criteria in breeding of wheat. Iranian Journal of Crop Sciences 4: 202-205 (In Persian).
31. Grattan, S.R. and Grieve, C.M. (1998). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78(1-4): 127-157.
32. Hallauer, A.R., Carena, M.J. and Miranda, J.B. (2010). Quantitative Genetic In Maize Breeding. 2th Ed. Iowa State University Press, Ames Iowa, USA.
33. Hanifei, M., Dehghani, H. and Khodadadi, M. (2017). Estimation of Genetic Parameters of some quantitative traits in coriander under drought stress, using triple test cross. Plant Genetic Researches, 4(1): 25-38 (In Persian).
34. Hassani, A. and Omidbaigi, R. (2002). Effect of water stress on some morphological, physiological and metabolic characteristics of basil. Agricultural Science, 12(3): 47-99 (In Persian).
35. Holland, J.B. (2005). Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS proc mixed. Crop Science, 46(2): 642-654.
36. Huehn, M. (1993). Harvest index versus grain/straw-ratio. Theoretical comments and experimental results on the comparison of variation. Euphytica, 68: 27-32.
37. Johnson, R. A. and Wichern, D. W. (2002). Applied Multivariate Statistical Analysis, 3th. Ed. The Iowa State University Press, Iowa, USA.
38. Kaplan, M., Kokten, K. and Akcura, M. (2017). Assessment of genotype× trait× environment interactions of silage maize genotypes through GGE biplot. Chilean Journal of Agricultural Research, 77(3): 212-217.
39. Kara, N. (2015). Yield, quality, and growing degree days of anise (Pimpinella anisum L.) under different agronomic practices. Turkish Journal of Agriculture and Forestry, 39(6): 1014-1022.
40. Karademir, C., Karademir, E., Ekinci, R. and Gençer, O. (2009). Correlations and path coefficient analysis between leaf chlorophyll content, yield and yield components in cotton (Gossypium hirsutum L.) under drought stress conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2): 241-244.
41. Kassahun, B.M., Alemaw, G. and Tesfaye, B. (2013). Correlation studies and path coefficient analysis for seed yield and yield components in Ethiopian coriander accessions. African Crop Science Journal, 21: 51-59.
42. Kearsey, M.J. and Pooni, H.S. (1996). The Genetic Analysis of Quantitative Traits. Stanley Thornes, Cheltenham, Great Britain, UK.
43. Kendal, E. (2019). Comparing durum wheat cultivars by genotype× yield× trait and genotype× trait biplot method. Chilean Journal of Agricultural Research, 79(4): 512-522.
44. Keyvan, S. (2010). The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal and Plant Science, 8(3): 1051-1060.
45. Khodadadi, M., Dehghani, H., Javaran, M.J., and Christopher, J.T. (2016a). Fruit yield, fatty and essential oils content genetics in coriander. Industrial Crops and Products, 94: 72-81.
46. Khodadadi, M., Dehghani, H., Jalali-Javaran, M., Rashidi-Monfared, S. and Christopher, J.T. (2016b). Numerical and graphical assessment of relationships between traits of the Iranian Coriandrum sativum L. core collection by considering genotype × irrigation interaction. Scientia Horticulturae, 200: 73-82.
47. Kramer, P.J. and Boyer, J.S. (1995). Water Relations of Plants and Soils. 1th Ed. Academic Press, New York, USA.
48. Laribi, B., Bettaieb, I., Kouki, K., Sahli, A., Mougou, A. and Marzouk, B. (2009). Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Industrial Crops and Products, 30(3): 372-379.
49. Letchamo, W., Xu, H.L. and Gosselin, A. (1995). Variations in photosynthesis and essential oil in thyme. Journal of Plant Physiology, 147(1): 29-37.
50. Li, J.J., Pei, G.L., Pang, H.X., Bilderbeck, A., Chen, S.S. and Tao, S.H. (2006). A new method for RAPD primers selection based on primer bias in nucleotide sequence data. Journal of Biotechnology, 126(4): 415-423.
51. Lilliefors, H.W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American statistical Association, 62(318): 399-402.
52. Maleki, A., Saba, J., Pouryousef, M., Jafari, H. and Jafari, A.A. (2017). Evaluation of genetic variation and comparison of Iranain anise (Pimpinella anisum L.) populations. Iranian Journal of Field Crop Science, 47(4): 661-670 (In Persian).
53. Mandal, K., Saravanan, R. and Maiti, S. (2008). Effect of different levels of N, P and K on downy mildew (Peronospora plantaginis) and seed yield of isabgol (Plantago ovata). Crop Protection, 27(6): 988-995.
54. Mardeh, A.S., Ahmadi, A., Poustini, K. and Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98(2): 222-229.
55. Msaada, K., Taarit, M.B., Hosni, K., Hammami, M. and Marzouk, B. (2009). Regional and maturational effects on essential oils yields and composition of coriander (Coriandrum sativum L.) fruits. Scientia Horticulturae, 122(1): 116-124.
56. Noroozi-Shahri, F., Pouryousef, M., Tavakoli, A., Saba, J. and Yazdinejad, A. (2015). Evaluation the performance of some of Iran's native fennel (Foeniculum vulgare Mill.) accessions under drought stress condition. Iranian Journal of Field Crop Science, 46: 49-56 (In Persian).
57. Omidbeigi, R. (2005). Approaches to the Production and Processing of Medicinal Plants, 8th Ed. Astan Quds Razavi press, Tehran, Iran (In Persian).
58. Ozbek, H., Guvenalp, Z., Kuruuzum-Uz, A., Kazaz, C. and Demirezer, L.O. (2015). Trinorguaian and germacradiene type sesquiterpenes along with flavonoids from herbs of Pimpinella cappadocica Boiss. & Bal. Phytochemistry Letters, 11: 74-79.
59. Parida, A.K., Dagaonkar, V.S., Phalak, M.S. and Aurangabadkar, L.P. (2008). Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiologiae Plantarum. 30: 619-627.
60. Pavela, R. (2014). Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. Journal of Asia-Pacific Entomology, 17(3): 287-293.
61. Ramirez-Vallejo, P. and Kelly, J.D. (1998). Traits related to drought resistance in common bean. Euphytica, 99(2): 127-136.
62. Razmjoo, K., Heydarizadeh, P. and Sabzalian, M.R. (2008). Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomile. International Journal of Agriculture and Biology, 10(4): 451-454.
63. Rebey, I.B., Jabri-Karoui, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F. and Marzouk, B. (2012). Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Industrial Crops and Products, 36(1): 238-245.
64. Roy, D. (2000). Plant Breeding: Analysis and Exploitation of Variation. Alpha Science International LTD, Panchsheel Park, New Delhi, IND.
65. Sabaghnia, N., Dehghani, H. and Sabaghpour, S.H. (2008). Graphic analysis of genotype by environment interaction for lentil yield in Iran. Agronomy Journal, 100(3): 760-764.
66. Safikhani, F. (2006). Investigation of Physiological Aspects of Drought Resistance in Dragonhead (Dracocephaalum moldavica L.). Ph.D. Thesis, Shahid Chamran University, Ramin Higher Education Agriculture and Natural Resources, Ahvaz, Iran (In Persian).
67. SAS/STAT users guide. (2004). SAS 9.1 for Windows Update. SAS Institute Inc., Cary, NC, USA.
68. Siddique, M.R.B., Hamid, A.I.M.S. and Islam, M.S. (2000). Drought stress effects on water relations of wheat. Botanical Bulletin of Academia Sinica, 41(1): 35-39.
69. Singh, H.P., Patra, N.K., Kalra, A., Kumar, H.S.B., Singh, S.P. and Singh, A.K. (2002). Genetic distance in coriander (Coriandrum sativum L.) for essential oil yield and yield traits. Journal of Spices and Aromatic Crops, 11(2): 101-105.
70. SPSS Inc (2010). IBM SPSS Statistics 20 Core System User's Guide. IBM Corp, Chicago, USA.
71. Sreenivasulu, N., Grimm, B., Wobus, U. and Weschke, W. (2000). Differential response of antioxidant compounds to salinity stress in salt‐tolerant and salt‐sensitive seedlings of foxtail millet (Setaria italica). Physiologia Plantarum, 109(4): 435-442.
72. Sreevalli, Y., Baskaran, K., Chandrashekara, R. and Kulkarni, R. (2000). Preliminary observations on the effect of irrigation frequency and genotypes on yield and alkaloid concentration in periwinkle. Journal of Applied Research on Medicinal and Aromatic Plants, 22: 356-358.
73. Turner, N.C. (1986). Crop water deficits: a decade of progress. Advances in Agronomy, 39: 1-51.
74. Wahb-Allah, M.A., Alsadon, A.A. and Ibrahim, A.A. (2011). Drought tolerance of several tomato genotypes under greenhouse conditions. World Applied Sciences Journal. 15: 933-940.
75. Weir, B.S. (1990). Genetic Data Analysis. Methods for Discrete Population Genetic Data. 1th Ed. Sinauer Associates, Sunderland, Massachusetts, USA.
76. Yan, F., Beyer, E.M., Azizi, A. and Honermeier, B. (2011). Effects of sowing time and sowing density on fruit yield, essential oil concentration and composition of anise (Pimpinella anisum L.) under field conditions in Germany. Zeitschrift für Arznei-and Gewürzpflanzen, 16(1): 26-33.
77. Yan, W., Hunt, L., Sheng, Q. and Szlavnics, Z. (2000). Cultivar evaluation & mega-environment investigation based on the GGE biplot. Crop Science, 40(3): 597-605.
78. Yan, W. and Kang, M.S. (2002). GGE biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. CRC Press, Boca Raton, Florida, USA. [DOI:10.1201/9781420040371]
79. Yan, W. and Rajcan, I. (2002). Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42(1): 11-20.
80. Zabet, M., Esmat, K., Izanlo, A. and Zohan, M.H.S. (2020). Evaluation of salinity stress tolerance of some fennel ecotypes in greenhouse conditions using GT biplot and GGE biplot. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 27(2): 1-10 (In Persian).
81. Zehtab-Salmasi, S., Ghasemi-Golezani, K. and Moghbeli, S. (2006). Effect of sowing date and limited irrigation on the seed yield and quality of dill (Anethum graveolens L.). Turkish Journal of Agriculture and Forestry, 30: 1-6.
82. Zeinaly-Khanghah, H., Izanloo, A., Hoseinzadeh, A. H. and Majnoonhoseini, N. (2004). Determination of the suitable drought resistance indices in commercial soybeans varieties. Iranian Journal of Agricultural Science, 35(4): 875-885 (In Persian).
83. Zhang, K. and John, P.C.L. (2005). Raised level of cyclin dependent kinase A after prolonged suspension culture of Nicotiana plumbaginifolia is associated with more rapid growth and division, diminished cytoskeleton and lost capacity for regeneration: implications for instability of cultured plant cells. Plant Cell Tissue and Organ Culture, 82: 295-308.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehravi S, Ranjbar G A, Najafi-Zarrini H, Mirzaghaderi G. Investigation of Drought Stress Tolerance and Adaptation in Iranian Endemic Anise (Pimpinella anisum L.) Genotypes. pgr 2020; 7 (1) :77-102
URL: http://pgr.lu.ac.ir/article-1-193-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 1 (2020) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 39 queries by YEKTAWEB 4642